Mission Statement

Union’s mathematics program seeks to further students in their quest for increased understanding of Creation and the created order and to equip students to serve God, church and society through excellence in thinking and the use of mathematics. We do this through a curriculum that develops the student’s ability to think logically, analytically, and abstractly; to pursue a body of knowledge whose basis is independent of both empirical observation and culture; and to learn humility and a sense of wonder at the complexity, beauty, and applicability of mathematics.

Student Awards

Departmental Awards are given to the 2 seniors who place first in the Major Field Test for Mathematics and Computer Science respectively as partial fulfillment of 498.
First Year Programming Award is awarded to a computer science student by The Department of Mathematics and Computer Science. A student is selected for excellence and expertise in first year programming courses.

The Wolfram Research Inc. Award is awarded to a freshman calculus student chosen by The Department of Mathematics and Computer Science based upon demonstrated outstanding achievement, enthusiasm, ingenuity and creativity in mathematics.

Curriculum: Mathematics
The department offers a major in mathematics and minors in mathematics, mathematics with emphasis in statistics, and actuarial science. Students majoring in mathematics may select from the following tracks: mathematics, teacher licensure in mathematics for secondary education (grades 7-12), or actuarial science. The offerings of the major provide a foundation for beginning graduate study in mathematics, for entry into mathematics-related work fields, and for teaching mathematics at the secondary level. Students majoring or minorin in mathematics begin their academic credit towards the major or minor with courses numbered MAT 205 or above. Students having a four-year high school mathematics program that included trigonometry should be able to begin the calculus sequence in their first semester.

I. Major in Mathematics—35 hours
A. MAT 205, 208, 211, 212, 213, 315 and 498 are required.
B. Select one: MAT 411, MAT 415.
C. Select 9 hours from junior or senior MAT courses.
D. Independent Study (MAT 495) or Departmental Special Study (MAT 395) may be used for 3 of the 9 hours required in C.
E. Prerequisites: PHY 231 and CSC 115

II. Teacher Licensure in Mathematics (Grades 7-12)
A. Major requirements as shown above to include MAT 413.
B. Professional Education: EDU 150, 250, 326, 422, 433; PSY 213, 318; SE 225.
C. Completion of applicable portions of the Praxis II.
D. For additional or minorin in mathematics begin their academic credit towards the major or minor with courses numbered MAT 205 or above. Students having a four-year high school mathematics program that included trigonometry should be able to begin the calculus sequence in their first semester.

III. Minor in Mathematics—21 hours
A. MAT 211 and 212 are required and one of: MAT 208, 205, 213; CSC 115.
B. At least 6 hours of upper-level work is required with no more than one departmental special study allowed and no independent study allowed.
C. The remaining must be 205 or higher.

IV. Minor in Mathematics with an Emphasis in Statistics—20 or 21 hours
A. MAT 211 and 212, 208, 305, and 405
B. One of: MAT 213, 314, 315; CSC 115.

V. Minor in Actuarial Science as earned with a Math Major—19 hours
A. Prerequisites (applicable to major): MAT 211, 212, 213, 305, 315, 401, 402.
B. ACC 211, 212; ECF 211, 212, 320.
C. ECF 411 or 412.
D. MAT 400.

VI. Minor in Actuarial Science as earned with a Business Major and BSBA—21 hours
A. Prerequisites (applicable to other requirements): ACC 211, 212; ECF 211, 212, 323; ECF 411 or 412; MAT 208, 211; CSC 115. Note: In the BSBA core MAT 208 substitutes for MAT 114 and CSC 115 for 105.
B. MAT 212, 213, 305, 315.
C. MAT 400, 401, 402.
Assessment of Majors

All senior mathematics majors must take the Major Field Test in mathematics as one requirement for MAT 498 (see below). Those majors completing a teacher licensure program are required to take the PRAXIS II.

Student Organizations

Kappa Mu Epsilon, honor society in Mathematics, selects students who have achieved standards of scholarship, professional merit, and academic distinction. A student must have completed 3 semesters’ rank in the upper 35%, completed 3 courses in MAT, to include calculus, and have a minimum 3.0 Math GPA. Sigma Zeta is a national honorary science society for those who have completed 15 hours in natural science and math with a minimum GPA of 3.0 in these courses.

Course Offerings in Mathematics (MAT)

() Hours Credit; F-Fall; W-Winter; S-Spring; Su-Summer

*100. Intermediate Algebra (3) As Needed
Topics include exponents, radicals, factoring, linear equations, quadratic equations, and system of equations. This course is for the student who has taken only one year of high school algebra or its equivalent; others may enroll only with permission of the department. Does not apply toward the Core math requirement.

*101. Fundamental Concepts (3) F, S
This course is designed to introduce the student to problem solving strategies and the real number system. Topics will include the whole numbers, integers, fractions and decimals, ratio and proportion, percents and functions.

*107. Mathematics for the Liberal Arts (3) F, S
This course is designed to introduce the student to the basic concepts of several areas of mathematics including algebra, geometry, trigonometry, probability, and descriptive statistics.

**111. College Algebra (3) F, W, S, Su As Needed
Prerequisite: Two years of high school algebra or MAT 100. Topics include equations in two variables, functions, graphing techniques, systems of equations and inequalities, exponential and logarithmic functions, matrices, and the theory of polynomial equations.

**112. Plane Trigonometry (3) S As Needed
Prerequisite: MAT 111. Topics include the definition of the trigonometric functions, radian measure, linear and angular velocity, graphing techniques, trigonometric identities and equations, the inverse trigonometric functions, and solving triangles.

**114. Introduction to Statistics and Probability (3) F, S and W, Su As Needed
Prerequisite: Two years of high school algebra or MAT 100. Descriptive statistics with introduction to inferential statistics. Topics include organization of data into frequency distribution tables and histograms, measures of central tendency, standard deviation, basic probability, continuous distributions through the normal distribution, introduction to sampling theory and hypothesis testing.

**116. Precalculus (3) F, S As Needed
Prerequisites: Two years of high school algebra and one of geometry. An introduction to polynomial, exponential, logarithmic, and trigonometric functions and basic analytic geometry. This course is intended for students planning to take MAT 211, and is not recommended for students who have taken MAT 111 and/or 112.
201. Calculus for Business/Social Sciences (3) As Needed
Prerequisite: MAT 111 or its equivalent.
Topics include a review of algebra principles, development of differential calculus with an emphasis on applications of the derivative to business and social sciences, and a brief introduction to integral calculus with elementary applications of the definite integral. Is not recommended for students that have taken MAT 211-12.

205. Discrete Mathematics (3) S, W As Needed
Prerequisite: MAT 111 or its equivalent.
Topics include elementary logic, sets, proof techniques including induction, relations and graphs, recurrence relations, basic counting techniques, equivalence relations, Boolean algebra, and algebraic structures.

208. Statistics (3) F; S—As Needed
Prerequisite: MAT 111.
Topics include descriptive and inferential statistics, probability theory, binomial and normal distributions, hypothesis testing, linear correlation and regression.

211. Calculus and Analytic Geometry I (4) F, S
Prerequisite: MAT 111 and 112, or 116.
Topics include basic concepts of plane analytic geometry, functions, limits, differentiation of algebraic and trigonometric functions, applications of the derivative, the indefinite and the definite integral, and the fundamental theorem of calculus.

212. Calculus and Analytic Geometry II (4) F, S
Prerequisite: MAT 211.
Topics include integration by substitution, numeral integration, applications of the definite integral, the calculus of transcendental functions, techniques of integration, and the calculus of parametrized curves.

213. Calculus and Analytic Geometry III (4) F, S As Needed
Prerequisite: MAT 212.
Topics include infinite series, polar coordinates, vectors in three-space, functions of several variables, partial derivatives, multiple integrals, and line integrals.

305. Statistical Methods (3) S or As Needed
Prerequisite: MAT 208.
Parametric and non-parametric statistical methods with an emphasis on applications. Topics include correlation and regression, analysis of variance, Chi-square distribution, contingency tables, and applications to the social sciences, life sciences and business.

310. History of Mathematics (3) As Needed
Prerequisite: MAT 212.
A survey of the major developments in the history of mathematics with special emphasis to the areas usually discussed in high school and undergraduate mathematics courses: geometry, algebra, trigonometry and calculus.

314. Differential Equations (3) S or As Needed
Prerequisite: MAT 213.
Topics include linear first-order differential equations and applications, higher-order differential equations and applications.

315. Linear Algebra (3) S or As Needed
Prerequisite: MAT 212.
Topics include systems of linear equations, matrices, determinants, linear transformations, diagonalization of matrices, and major applications to business and the sciences.
320. Introduction to Complex Variables (3) F—Even Years or As Needed
Prerequisite: MAT 213.
Algebraic properties of the complex number system, complex transformations, analytic functions, complex integration, residues, and series representations of functions.

360. Numerical Analysis (3) As Needed
Prerequisite: CSC 115, MAT 205 and 213.
Numerical computations, roots of equations, simultaneous nonlinear and linear simultaneous equations, numerical integration and differentiation, and power series calculations.

400. SOA Course I Exam Preparation (1) As Needed
Prerequisite: MAT 213 and 305.
Application of calculus and statistics to risk management problems relevant to the Society of Actuaries Course I exam. Sitting for the SOA Course I exam is required for successful completion of the course. Pass/Fail.

401. Actuarial Mathematics I (3) As Needed
Prerequisite: MAT 400
Measures of interest, annuities-certain, amortization schedules, sinking funds and bonds. Introduction to life tables and life annuities.

402. Actuarial Mathematics II (3) As Needed
Prerequisite: 401.
Actuarial models, including survival models, stochastic processes and loss models. Applications to insurance and annuity contracts.

405. Mathematical Statistics (3) As Needed
Prerequisites: MAT 305 & 212.
A calculus-based introduction to the theory of probability and statistics. Topics include conditional probability and independence, random variables, mathematical expectations, discrete and continuous distributions, central limit theorem and sampling theory.

411. Introduction to Analysis (3) F—Odd Years or As Needed
Prerequisite: MAT 205 and 213.
A rigorous inquiry into sequences, limits, continuity, differentiation, and integration.

413. College Geometry (3) F—Odd Years, Su—Even Years as Needed
Prerequisite: MAT 205 and 212.
Topics include axiomatic foundations of Euclidean and non-Euclidean geometry, models for incidence geometries, and development of theorems in the geometries of the Euclidean plane and the hyperbolic plane.

415. Abstract Algebra (3) F—Even Years
Prerequisite: MAT 205 and 212.
An introduction to number theory, group theory, and ring theory. Topics include divisibility in the integers, permutation groups, homomorphisms, normal subgroups and quotient groups, Lagrange’s Theorem, ideals, and polynomial rings.

498. Mathematics Seminar (2) F
Prerequisite: 20 hours of MAT course work and Senior standing.
The setting for administering the Major Field Test, for addressing those areas of mathematics for which prior assessment indicates the need for improvement, for providing seniors an opportunity to demonstrate their awareness of the abstract nature of mathematics and its unifying principles through oral and written presentations, and for discussion of current mathematical research. The course may be modified at the
discretion of the department.

* Six hours maximum may be applied toward graduation from MAT 111-2, 116.
* Does not apply toward the major or minor.

Curriculum: Computer Science

The department offers four plans of study: Computer Science major, Digital Media Studies major, Computer Science minor, and Computer Information Systems minor.

Upon completion of the Computer Science Major, the student will have an understanding of and an appreciation for the interrelation of the 5 main areas of study in Computer Science: elements and architecture, programming concepts and languages, algorithms, data structures, and computer theory. The major emphasizes the practical application of basic concepts from each; therefore, the graduate will be able to continue study in Computer Science at the graduate level, or enter the job market.

The Digital Media Studies major is an interdisciplinary program joining Art, Communication Arts, and Computer Science. Its purpose is to produce a student aesthetically, theoretically, and technologically trained and capable of excellence in the relatively new area of the design, production, and implementation of digital communications media. Included are such areas as web page design, digital visual and aural communications strategies and theory, interactive media design, media programming, digital presentation techniques, and technological advances in digital communications.

The Computer Science Minor is intended for students interested primarily in pursuing a career in computer science or related field immediately upon graduation.

The Computer Information Systems Minor will provide the student with a general understanding of analysis, design, and implementation of applications via third- and fourth-generation programming languages and pre-written packages. This minor is intended for the student expecting to use computers in a job-supportive mode.

Neither CSC 105 nor 245 is applicable to any major/minor in the department.

I. Major in Computer Science—41 hours
B. Select one: CSC 335, 360, 395, 411, 465, 485.
C. Prerequisites: MAT 205, 211-2, 315.

II. Digital Media Studies Major
A. Core requirements for all emphases—39 hours
 1. ART 120, 221, 231, 345.
 2. COM 220, 320, 365, 419.
 3. CSC 115, 321, 360, 365.
B. Computer Science Emphasis requirements—23 hours
 1. CSC 125, 220, 235, 255, 335, 498.
 3. Prerequisite: MAT 205.
C. Art Emphasis—(28 hours) and Communication Arts Emphasis (24 hours)
 See the respective department for details.

III. Minor in Computer Science—21 hours
A. Required: CSC 115, 125, 220, 235, 260, 311.
B. One additional upper level CSC course other than 490 or 498.
C. Prerequisite: MAT 205.

IV. Minor in Computer Information Systems—21 hours
A. Required: CSC 115, 125, 235.
B. Select 4: CSC 321, 360, 365, 395, 411.
Assessment of Majors

All senior computer science majors must take the Major Field Test in computer science as one requirement for CSC 498 (see below).

Student Organizations

The ACM (Association for Computing Machinery) Student Chapter is composed of students who are interested in today’s world of computing. The club promotes an increased knowledge of the science, design, development, construction, languages, and applications of modern computing machinery. It provides a means of communication between persons interested in computing machinery and their applications.

Course Offerings in Computer Science (CSC)

() Hours Credit: F-Fall; W-Winter; S-Spring; Su-Summer

105. Survey of Microcomputing Applications (3) F, S
An introduction, for the non major/minor, to computers and their applications. A study of types of hardware associated with systems and how computers function. Software packages include word processing, an electronic spreadsheet, a database management system and an internal component. Cannot be earned for credit after 115.*

115. Computer Science: Introduction & Overview (3) F, S
Introduction exposing majors/minors to the breadth and interrelationships of courses in the field and empowers others for a continuous exploration of today’s technical society. A language-independent overview of hardware and software with emphasis on problem solving and algorithm development. Cannot be earned for credit after 105 without departmental approval.*

*Either 105 or 115 apply to the B.S. specific core, but not both.

125. Computer Science I: Programming in Java (4) F, S
Prerequisite: CSC 115.
Basic concepts of problem solving, algorithm design and analysis, abstract data types, and program structures. GUI development will be introduced and the object-oriented programming paradigm will be emphasized. Students will design, implement, debug, test and document programs for various applications.

205. Computer Science II: Algorithms & Data Structures (3) F
Prerequisites: CSC 125, MAT 205. Pre-or Corequisite: MAT 212.
A study of the complexity of algorithms and advanced data structures, including trees and graphs. Tools for analyzing the efficiency and design of algorithms, including recurrence, divide-and-conquer, dynamic programming, and greedy algorithms.

220. Computer Repair and Maintenance (3) S
Prerequisite: CSC 115.
A hands-on approach to competence in configuring, installing, diagnosing, repairing, upgrading and maintaining microcomputers and associated technologies. The course covers both core hardware and OS technologies.

235. Computer Ethics (2) S
Major social and ethical issues in computing, including impact of computers on society and the computer professional’s code of ethics.

245. FORTRAN (3) As Needed
Prerequisite: CSC 115 and MAT 211.
Structures of FORTRAN will be studied: statements, subprograms, simple variables, arrays, and files. Design, coding, and testing of scientific problems will emphasize these
structures. In addition, various implementations will be discussed.

255. Programming in C (3) S
Prerequisites: CSC 115.
Introduces the procedural programming paradigm using ANSI C.

260. Digital Systems (3) F
Prerequisite: CSC 125, CSC 220, and MAT 205.
Binary codes, Boolean algebra, combinational logic design, flip-flops, counters, synchronous sequential logic, programmable logic devices, MSI logic devices, adder circuits.

311. Computer Architecture (3) S
Prerequisite: CSC 260.
Introduction to the architecture of stored-program digital computer systems including processor and external device structures and operation, machine operations and instructions, and assembly language concepts and programming.

321. Database Management Systems (3) F
Prerequisites: CSC 115 and Junior standing.
Hands-on approach to the design of databases: conceptual design using E-R model and logical design using the relational model. The architecture of database application is discussed including the 3-tiered model and web access. Queries, forms, reports and application will be studied by implementing them in a client-server environment.

335. Computer Graphics (3) F—Odd Years
Prerequisites: CSC 255; Recommended prerequisite: MAT 315.
An investigation of a wide range of computer graphics via programming techniques. Topics: graphic display theory, graphic techniques, applications, and hardware.

360. Web Building & Site Management (3) F
Prerequisite: CSC 115. Pre-or Corequisite: CSC 321; Recommended Pre: CSC 125.
Fundamentals of web site development and management, graphical web-building tools, multi-level site planning and construction, navigation schemes, client- and server-side scripting, basic interactivity, information organization, and the delivery of basic multimedia content.

365. Data Communications and Networking (3) S
Prerequisite: CSC 115 and Junior standing.
Introduction to hardware and software components of computer data communications and networking. Emphasis is on practical, hands-on set-up, and administration of a LAN, peer-to-peer networking, and the TCP/IP protocol. Topics include routing, shared file and application access, remote printing, and security.

411. Systems Analysis (3) As Needed
Prerequisite: CSC 321.
Process of designing computer-based systems for business applications, tools and techniques of systems development and management, advantages and disadvantages of conversion from existing to new systems will be discussed.

425. Operating Systems (3) F
Prerequisites: CSC 220, 255 and 365. Recommended prerequisite: CSC 311.
Systems resource management: brief historical overview and case studies; discussion of multi-tasking and related concepts of scheduling, interprocess communication and mutual exclusion/deadlock; overview of file management and memory management (virtual memory, paging, swapping, and segmentation). Theory is augmented by detailed study of implementation of an existing operating system.
455. Programming Languages (3) S
Prerequisite: CSC 255.
Issues in programming language design, specification, and implementation: overview and comparison of major contemporary languages; analysis of translation process with focus on grammars and Chomsky hierarchy; investigation of data representation, binding, sequence control, logic and object oriented paradigms. Theory is augmented by implementation of a tokenizer and parser for a simple language.

465. Formal Language (3) F—As Needed
Prerequisites: CSC 255 and MAT 315. Recommended prerequisite: CSC 455.
Theoretical foundations of computer science including formal languages and automata, parsing of context-free languages, Turing machines, computability and complexity.

485. Internship in Computer Science (3) As Needed
Prerequisite: CSC 205, 220, 235 and one of: 321, 360, 365.
Selected students are assigned as interns to obtain supervised practical work related to the CS discipline at a business or non-profit organization.

490. Digital Media Studies Senior Seminar (3) F, S
Prerequisite: Taken in Senior Year. Reciprocal credit: ART/COM 490.
Capstone course for DMS majors to bring the emphases together for exposure to the variety of fields of digital media and associated workplace cultures. Includes case studies, guest speakers, field trips and an interdisciplinary group project culminating in the production of a computer-based portfolio for job search.

498. Computer Science Seminar (2) S
Prerequisite: 20 hours of CSC and taken in Senior Year.
The setting for administering the Major Field Test and addressing topics the department perceives the need for additional instruction. Students will synthesize previously learned concepts by developing and implementing a solution to a real-world programming problem. Each project will culminate in a report presented at a regional conference. The course may be modified at the discretion of the department.

Available in each departmental prefix:

180-280-380-480. Study Abroad Programs (1-4) As Needed
All courses and their application must be defined and approved prior to travel.

195-6-7. Special Studies (1-4) On Demand
Lower-level group studies which do not appear in the regular departmental offerings.

395-6-7. Special Studies (1-4) On Demand
Upper-level group studies which do not appear in the regular departmental offerings.

495-6-7. Independent Study (1-4) On Demand
Individual research under the guidance of a faculty member(s).

499. Seminar (1-3)
To be used at the discretion of the department for majors only.