Faculty
William Nettles (2006). Professor of Physics and Acting Chair. B.S., Mississippi College; M.S., and Ph.D., Vanderbilt University
David A. Ward (1992, 1999). Professor of Physics, B.S. and M.A., University of South Florida; Ph.D., North Carolina State University.

Curriculum
The programs in physics at Union University seek to effectively serve all students within the institution, recognizing that each student’s needs may be different, with different career goals. The curriculum is designed to provide basic content for students classified as physics majors/minors, non-science majors, engineers, pre-professionals, and those preparing for a teaching career in secondary school. The physics faculty seek to help students understand the physical world (the universe) by examining the laws which govern all things, the methods by which the cosmos can be studied, and physics’ relationships to other aspects of human experience. The faculty endeavor to create an atmosphere in which students are challenged to acquire problem-solving skills using advanced mathematics and modern methods in science. Students are encouraged to develop in-depth analytical skills and an inquiring attitude toward scientific inquiry while maintaining a Christian worldview. The physics curriculum provides the liberal arts students with a working knowledge of science and meets the needs of students who wish to:

- pursue a teaching career in elementary or secondary school;
- enter engineering, one of the health professions, or an allied health field;
- become a professional/industrial physicist; or
- continue study of physics or a related field at the graduate level.

I. Major in Physics—38 semester hours
A. Physics 231-232, 311, 430, 424-5, 498
B. Select 18 hours from: PHY 262, 313, 314, 325, 360, 395*, 400, 416, 420, 495
C. Prerequisites in Math: 211, 212, 213, 314
*Must be approved Special Studies

II. Major in Engineering Physics—73 semester hours
A. Prerequisites: CHE 111, 113; CSC 115; CSC 245 or 255; ECF 211; MAT 211, 212, 213, 314; MAT 315 or 208
B. PHY 231, 232, 311, 313, 314, 325, 400—26 hours
C. EGR 101, 105, 210, 250, 270, 275, 290, 343, 352; 420 or 450; 205 or 470; 491, 498—40 hours
D. EGR/PHY 262 and EGR/PHY 360—7 hours

III. Major in Physical Science—48 hours
A. CHE 111, 112, 113, 211, 221—15 hours
B. PHY 112, 231-32, 311, 310 or 301—22 hours
C. Upper Level Electives from CHE &PHY—7 hours; maximum 1 hour from 424 and 1 from 498

IV. Minor in Physics—24 semester hours
Physics 231-232, 311, + 10 hours of Physics electives except PHY 111, 112, 301, 310

V. Teacher Licensure in Physics (Grades 7-12)
A. Complete the requirements shown above for the Physics major.
B. Professional Education: EDU 150, 250, 326, 418, 433, PSY 213, 318, SE 225.
C. Complete the applicable portions of the Praxis II.
D. For additional information, see the Assistant Dean for Teacher Education and Accreditation.

Assessment of Major
All Physics majors are required to take a research class, PHY 424, and a seminar class, PHY 498, in which presentations are made and students are questioned orally. Seniors must also take the Major Field Examination in physics and if seeking teacher licensure, complete the required education tests such as PRAXIS.

Student Organizations
The Society of Physics Students (SPS) stimulates an awareness of physics and the related sciences, and acquaints students with professional opportunities within the discipline. The organization promotes professionalism and pride in the physical sciences and assists students in studying, preparing, and presenting technical material. Membership is open to any student interested in physics.

Student Awards
The Physics Research Award is given by the faculty of the Department of Physics to the student who presents the best research paper of the year. The research must have been an original work and must be presented at a state, regional, or national professional meeting prior to the graduation.

The Freshman Physics Award is given to the freshman student completing PHY 231-232 who has shown outstanding scholastic achievement, Christian service, and school spirit.
Course Offerings in Physics (PHY)

111. Principles of the Physical Sciences (4) F, W, S, Su
Introduction to physics and chemistry for non-science majors including their historical, philosophical, and social significance. Exercises are indicative of various scientific methods. Knowledge of basic algebra is assumed. Science credit will not be given after completion of a course in either CHE or PHY. Three lectures, one 2-hour laboratory/week.

112. Earth and Space Science (4) F, W, Su
Prerequisite: PHY 111 or 213 or 231. Reciprocal credit: GEO 112.
Earth science and astronomy: their nature, history, divisions, and relation to other sciences. The physical laws of nature will be examined as they apply to physical geography, meteorology, and astronomy. Three lectures, one 2-hour laboratory/week.

213-4. Introduction to Physics (4) 213—F–Odd, 214—S–Even
Prerequisite: MAT 111& 112, or 116.
The first semester involves the study of classical mechanics, wave motion, fluid flow, sound, temperature, and heat. The second involves the study of electricity, magnetism, light, optics, and modern physics. Three lectures, one 3-hour laboratory/week.

231-2. University Physics I, II with Calculus (5) 231—F, 232—S
Prerequisite to 231: MAT 211. Pre- or Corequisite to 232: MAT 212.
The first semester involves the study of classical mechanics, wave motion, fluid flow and sound. The second involves the study of temperature and heat, electricity, magnetism, light and optics. Four lectures, one laboratory/week.

311. University Physics: Modern Physics (4) F—Even Years
Prerequisite: MAT 212 & PHY 232.
An introduction to special relativity, quantum mechanics, atomic, and nuclear physics. The laboratory involves investigations in radioactivity, as well as performing some of the classic experiments of modern physics. Three lectures, one 3-hour lab/week.

313. Intermediate Mechanics (3) F—Even Years
Prerequisite: PHY 232 & MAT 212.
Introduction to rectilinear and curvilinear dynamics of particles and rigid bodies; both Lagrangian and Hamiltonian formulations of mechanics will be developed and applied.

314. Intermediate Electricity and Magnetism (3) S—Odd Years
Prerequisites: MAT 212 & PHY 232.
Electric and magnetic fields both in media and a vacuum. Maxwell’s equations are used to determine electromagnetic fields produced by a variety of charge and current distributions.

325. Thermodynamics & Statistical Mechanics (3) F—Even Years
Prerequisites: MAT 212 & PHY 232.
An intermediate survey of heat and thermodynamics including the concepts of temperature and heat, the laws of thermodynamics, thermodynamics potentials, the Maxwell relations and statistical methods applied to the thermodynamics of various states of matter, including gases, liquids, and quantum fluids.

360. Mathematical Methods in Physics (3) S—Odd Years
Prerequisites: MAT 213, PHY 232.
Special differential equations, complex number analysis, linear algebra, group theory and Fourier analysis applied to advanced topics in physics.

400. Optics and Lasers (3) S—Odd Years
Prerequisites: PHY 262 and PHY 232.
Analyzes the behavior of electromagnetic radiation, emphasizing geometrical optics and instrumentation. The role of optics in spectroscopic measurements will be highlighted by discussing polarization and diffraction. Includes an introduction to laser physics and operations using systems, including excimer and neodymium-YAG lasers.

416. Physical Principles of Solid State Devices (3) S
Prerequisites: PHY 262 and 311. Reciprocal credit: EGR 416. See EGR 416 for description.

420. Quantum Mechanics (3) S—Even Years
Prerequisites: PHY 311 & MAT 314.
Fundamental principles of quantum mechanics, methods of calculation, and solutions to Schrödinger’s equation. Applications to atomic, molecular, and nuclear physics with an introduction to operator notation. Three lecture hours/week.
424-425. Physics Research (1-3) F, S
Prerequisite: PHY 311.
Application of a simple piece of original work to include a
literature search and summary paper on a topic of current
interest in physics. Under faculty supervision, this work
may be done off site at a national laboratory or comparable
research facility.

430. Experimental Physics Laboratory (3) F—Even
Years
Prerequisites: PHY 311 & MAT 213.
Modern experimentation, research, data acquisition and
analysis. The theory, practice and reporting of research in a
scientific format are demonstrated through experiments in
atomic, nuclear, solid state, thermodynamics, and optics.
One lecture, 4 lab hours/week.

498. Seminar (1-3) S
Prerequisite: 20 hours of physics and junior/senior
standing.
Skills in scientific and technical presentations, written
and oral, will be polished. To be used at the discretion of
the department for majors/minors only.

179-279-379-479. External Domestic Study Programs
(1-3) As Needed
All courses and their applications must be defined and
approved prior to registering.

180-280-380-480. Study Abroad Programs (1-4) As
Needed
All courses and their application must be defined and
approved prior to travel.

195-6-7. Special Studies (1-4) On Demand
295-6-7. Special Studies (1-4) On Demand
Lower-level group studies which do not appear in the
regular departmental offerings.

395-6-7. Special Studies (1-4) On Demand
Upper-level group studies which do not appear in the
regular departmental offerings.

495-6-7. Independent Study (1-4) On Demand
Individual study under the guidance of a faculty
member(s).

498-9. Seminar (1-3) As Needed
To be used at the discretion of the department.