Faculty

William Nettles (2006). Professor of Physics and Department Chair. B.S., Mississippi College; M.S., and Ph.D., Vanderbilt University

Ildefonso Guilaran (2008). Assistant Professor of Physics. B.S., Western Kentucky University; M.S. and Ph.D., Florida State University.

David A. Ward (1992, 1999). Professor of Physics, B.S. and M.A., University of South Florida; Ph.D., North Carolina State University.

Curriculum

The programs in physics at Union University seek to effectively serve all students within the institution, recognizing that each student’s needs may be different, with different career goals. The curriculum is designed to provide basic content for students classified as physics majors/minors, non-science majors, engineers, pre-professionals, and those preparing for a teaching career in secondary school. The physics faculty seek to help students understand the physical world (the universe) by examining the laws which govern all things, the methods by which the cosmos can be studied, and physics’ relationships to other aspects of human experience. The faculty endeavor to create an atmosphere in which students are challenged to acquire problem-solving skills using advanced mathematics and modern methods in science. Students are encouraged to develop in-depth analytical skills and an inquiring attitude toward scientific inquiry while maintaining a Christian worldview. The physics curriculum provides the liberal arts students with a working knowledge of science and meets the needs of students who wish to:

- pursue a teaching career in elementary or secondary school;
- enter engineering, one of the health professions, or an allied health field;
- become a professional/industrial physicist; or
- continue study of physics or a related field at the graduate level.

I. Major in Physics—38 hours

A. Physics 231-232, 311, 430, 424 (1-3 hours), 498—19-21 hours
B. Select 6 or more courses: PHY 262, 313, 314, 325, 360, 395-6-7*, 400, 410, 420, 425 (1-2 hours**), 495*
C. Prerequisites: MAT 211, 212, 213, 314
 *Must be approved Special/Independent Studies
 **Maximum 3 hours from 424 and 425 apply to major.

II. Major in Engineering Physics—64 or 65 hours

A. Prerequisites: CHE 111, 112; CSC 255; ECO 211; MAT 211, 212, 213, 314, 315
B. PHY 231, 232, 262, 311, 313, 314, 325–27 hours
C. One of PHY 400, 410, 420, 430–3 hours
D. PHY 360 or EGR 360–3 hours
E. Two of EGR 101, 105, 109–4 or 5 hours
F. EGR 210, 250, 240, 261, 342, 491–19 hours
G. Select 7 hours from one of the groups:
 1. Group 1: EGR 361, 375, 405, 416, 475
 2. Group 2: EGR 320, 385, 450, 456, 470, 475
H. EGR 498 or PHY 498–1 hour
I. No minor is required with the EGR PHY major.

III. Major in Physical Science—48 hours

A. CHE 111, 112, 113, 211, 221–15 hours
B. PHY 231, 232, 262, 311, 313, 325—27 hours
C. One of PHY 400, 410, 420, 430—3 hours
D. PHY 360 or EGR 360—3 hours
E. Two of EGR 101, 105, 109—4 or 5 hours
F. EGR 210, 250, 240, 261, 342, 491–19 hours
G. Select 7 hours from one of the groups:
 1. Group 1: EGR 361, 375, 405, 416, 475
 2. Group 2: EGR 320, 385, 450, 456, 470, 475
H. EGR 498 or PHY 498—1 hour
I. No minor is required with the EGR PHY major.

IV. Minor in Physics—24 semester hours

A. PHY 231-232, 311, 314, 325—27 hours
B. Select 7 hours from one of the groups:
 1. Group 1: EGR 361, 375, 405, 416, 475
 2. Group 2: EGR 320, 385, 450, 456, 470, 475
C. Select 7 hours from one of the groups:
 1. Group 1: EGR 361, 375, 405, 416, 475
 2. Group 2: EGR 320, 385, 450, 456, 470, 475
D. Select 7 hours from one of the groups:
 1. Group 1: EGR 361, 375, 405, 416, 475
 2. Group 2: EGR 320, 385, 450, 456, 470, 475

V. Teacher Licensure in Physics (Grades 7-12)

A. Complete the requirements shown above for the Physics major.
B. Professional Education: EDU 150, 250, 326, 418, 433, PSY 213, 318, SE 225.
C. Complete the applicable portions of the Praxis II.
D. For additional information, see the Assistant Dean for Teacher Education and Accreditation.

Assessment of Major

All Physics majors are required to take a research class, PHY 424, and a seminar class, PHY 498, in which presentations are made and students are questioned orally. Seniors must also take the Major Field Examination in physics and if seeking teacher licensure, complete the required education tests such as PRAXIS.

Student Organizations

The Society of Physics Students (SPS) stimulates an awareness of physics and the related sciences, and acquaints students with professional opportunities within the discipline. The organization promotes professionalism and pride in the physical sciences and assists students in studying, preparing, and presenting technical material. Membership is open to any student interested in physics.

Student Awards

The Physics Research Award is given by the faculty of the Department of Physics to the student who presents the best research paper of the year. The research must have been an original work and must be presented at a state, regional, or national professional meeting prior to the graduation.

The Freshman Physics Award is given to the freshman student completing PHY 231-232 who has shown outstanding scholastic achievement, Christian service, and school spirit.
Course Offerings in Physics (PHY)

111. Principles of the Physical Sciences (4) F, W, S, Su
Introduction to physics and chemistry for non-science majors including their historical, philosophical, and social significance. Exercises are indicative of various scientific methods. Knowledge of basic algebra is assumed. Science credit will not be given after completion of a course in either CHE or PHY. Three lectures, one 2-hour laboratory/week.

112. Earth and Space Science (4) F, W, Su
Prerequisite: PHY 111 or 213 or 231. Reciprocal credit: GEO 112.
Earth science and astronomy: their nature, history, divisions, and relation to other sciences. The physical laws of nature will be examined as they apply to physical geography, meteorology, and astronomy. Three lectures, one 2-hour laboratory/week.

213-4. Introduction to Physics (4) 213—F–Odd, 214—S–Even
Prerequisite: MAT 111& 112, or 116.
The first semester involves the study of classical mechanics, wave motion, fluid flow, sound, temperature, and heat. The second involves the study of electricity, magnetism, light, optics, and modern physics. Cannot be used as a PHY Elective toward majors/minors. Three lectures, one 3-hour laboratory/week.

231-2. University Physics I, II with Calculus (5) 231—F, 232—S
Prerequisite to 231: MAT 211. Pre- or Corequisite to 232: MAT 212.
The first semester involves the study of classical mechanics, wave motion, fluid flow and sound. The second involves the study of temperature and heat, electricity, magnetism, light and optics. Four lectures, one laboratory/week.

262. Electrical and Electronic Circuits (4) S—Odd Years
Prerequisite: PHY 232 and MAT 212. Reciprocal credit: EGR 262. See EGR 262 for description.

301. Perspectives in Science (4) F, W
Prerequisite: PHY 111-2. Reciprocal credit: CHE 301.
The study of science from a historical and philosophical perspective in an interdisciplinary manner, exploring the complementarity of physical and biological sciences, while addressing relationships to other disciplines such as art, religion, and politics. Examines the role of science in global issues and life issues. Three lecture, 2 lab hours/week.

Prerequisite: PHY 111.
A non-technical course for the general student presenting a broad view of energy and its relationship to man and the environment. Topics: past and future demands, energy sources, storage and transportation of energy, environmental considerations, conservation, politics, economics, and national policy. Three lectures, 3 lab hours/week.

311. University Physics: Modern Physics (4) F—Even Years
Prerequisite: MAT 212 & PHY 232.
An introduction to special relativity, quantum mechanics, atomic, and nuclear physics. The laboratory involves investigations in radioactivity, as well as performing some of the classic experiments of modern physics. Three lectures, one 3-hour lab/week.

313. Intermediate Mechanics (3) F—Even Years
Prerequisite: PHY 232 & MAT 212.
Introduction to rectilinear and curvilinear dynamics of particles and rigid bodies; both Lagrangian and Hamiltonian formulations of mechanics will be developed and applied.

314. Intermediate Electricity and Magnetism (3) S—Odd Years
Prerequisites: MAT 212 & PHY 232.
Electric and magnetic fields both in media and a vacuum. Maxwell’s equations are used to determine electromagnetic fields produced by a variety of charge and current distributions.

325. Thermodynamics & Statistical Mechanics (3) F—Even Years
Prerequisites: MAT 212 & PHY 232.
An intermediate survey of heat and thermodynamics including the concepts of temperature and heat, the laws of thermodynamics, thermodynamics potentials, the Maxwell relations and statistical methods applied to the thermodynamics of various states of matter, including gases, liquids, and quantum fluids.

360. Mathematical Methods in Physics (3) S—Odd Years
Prerequisites: MAT 213, PHY 232.
Special differential equations, complex number analysis, linear algebra, group therapy and Fourier analysis applied to advanced topics in physics.

400. Optics and Lasers (3) S—Odd Years
Prerequisites: PHY 262 and 311. Reciprocal credit: EGR 416. See EGR 416 for description.

410. Nuclear Physics (3) As needed
Prerequisites: MAT 213 and PHY 311.
A study of the atomic nucleus, including its constituents, interactions and energies. Radiative processes, angular momentum, and practical applications such as astrophysics, medical physics, energy production, and environmental physics.

416. Physical Principles of Solid State Devices (3) S
Prerequisites: PHY 262 and 311. Reciprocal credit: EGR 416. See EGR 416 for description.
420. Quantum Mechanics (3) S—Even Years
Prerequisites: PHY 311 & MAT 314.
Fundamental principles of quantum mechanics, methods of calculation, and solutions to Schrodinger’s equation. Applications to atomic, molecular, and nuclear physics with an introduction to operator notation. Three lecture hours/week.

424-425. Physics Research (1-3) F, S
Prerequisite: PHY 311.
Application of a simple piece of original work to include a literature search and summary paper on a topic of current interest in physics. Under faculty supervision, this work may be done off site at a national laboratory or comparable research facility.

430. Experimental Physics Laboratory (3) F—Even Years
Prerequisites: PHY 311 & MAT 213.
Modern experimentation, research, data acquisition and analysis. The theory, practice and reporting of research in a scientific format are demonstrated through experiments in atomic, nuclear, solid state, thermodynamics, and optics. One lecture, 4 lab hours/week.

498. Seminar (1-3) S
Prerequisite: 20 hours of physics and junior/senior standing.
Skills in scientific and technical presentations, written and oral, will be polished. To be used at the discretion of the department for majors/minors only.

179-279-379-479. External Domestic Study Programs (1-3) As Needed
All courses and their applications must be defined and approved prior to registering.

180-280-380-480. Study Abroad Programs (1-4) As Needed
All courses and their application must be defined and approved prior to travel.

195-6-7. Special Studies (1-4) On Demand
Lower-level group studies which do not appear in the regular departmental offerings.

295-6-7. Special Studies (1-4) On Demand
Upper-level group studies which do not appear in the regular departmental offerings.

395-6-7. Independent Study (1-4) On Demand
Individual study under the guidance of a faculty member(s).

498-9. Seminar (1-3) As Needed
To be used at the discretion of the department.