Overview of Distributed Computing

- Field of Computer Science that studies distributed systems
 - A distributed system is a group of autonomous computers that communicate through a network

- Use of distributed systems to solve computational problems
 - Each problem is divided into many tasks, each of which is solved by one computer
Visual Representation
History of Distributed Computing

- ARPANET – predecessor of the internet
 - Late 1960s
 - ARPANET email was invented in the early 1970s
 - Probably the earliest example of a large-scale distributed application

- The first widespread distributed systems were LANs (local-area networks)
 - Invented in the 1970s

- Became its own branch of computer science in the late 1970s - early 1980s
Advantages of Distributed Computing

- Two main reasons to use distributed computing & distributed systems:
 - The vary nature of the application may require the use of several computers communicating with one another
 - Ex. Data is produced in a different location than it is needed
 - While a single computer may be capable of handling the work, a distributed system could be beneficial for practical reasons
 - Ex. May be more cost effective to obtain the desired performance from a cluster of low-end computers rather than from a single high-end computer
Advantages of Distributed Computing

- More reliable than a single high-end machine
 - No single point of failure
- Easier to expand and manage than a monolithic uniprocessor system
Applications for Distributed Computing

- Telecommunication Networks
 - Telephone networks
 - Computer networks (internet)

- Network Applications
 - World Wide Web & Peer-to-Peer Networks
 - Distributed Databases
 - Banking & Airline reservation systems

- Real-Time Process Control
 - Aircraft Control Systems
 - Industrial Control Systems

- Parallel Computation
 - Scientific Computing (cluster, grid, volunteer computing projects)
 - Distributed Rendering in Computer Graphics
Architectures of Distributed Computing

- Client-Server
- 3-Tier Architecture (most web applications)
- n-Tier Architecture
- Tightly Coupled (clustered)
- Peer-to-Peer
- Space Based
Our Rough Road to Success

- Using ancient computers from the Computer Science closet
 - Multiple failing/corrupted hard drives
 - Multiple slow/faulty disk drives
 - Unreliable computers
 - Just because you can install Ubuntu doesn’t mean it will boot up the next time you power up the PC!
Our Rough Road to Success

- QADPZ (Quite Advanced Distributed Parallel Zystem)
 - Open source implementation of a system for distributed computing
 - A client-master-slave architecture, using XML format message based communication
 - Allows the management/use of the computational power of idle computers in a network
 - Users of the system can send computing tasks to these computers to be executed
 - in the form of a dynamic library, an executable program, or any program which can be interpreted
 - Supports Linux, Unix, Win32, and Mac OS X.
Our Rough Road to Success

- QADPZ (Quite Advanced Distributed Parallel Zystem)
 - Incompatibility with newest versions of Ubuntu
 - Last Stable Release – version 0.7
 - October 10, 2002 (over 8 years ago!)
 - Ubuntu 9.10 Final Release
 - October 29, 2009
Our Rough Road to Success

- Condor
 - specialized workload management system for computationally-intensive jobs
 - Provides:
 - a job queuing mechanism
 - scheduling policy
 - priority scheme
 - resource monitoring
 - resource management
 - Works with new versions of Ubuntu!
 - Last stable release – version 7.4.2
 - April 6, 2010
More about Condor

- Can use non-dedicated machines to run jobs
 - Harnesses power of idle machines without effecting machines being used at the time
- Simplifies the job submission process
 - Machine advertisements
- Maximizes efficiency
 - Intelligent job allocation
- Use of Universes (runtime environments)
 - Standard
 - Vanilla
More about Condor

- Developed at the University of Wisconsin-Madison
- Open Source
- Runs on:
 - AIX
 - Solaris
 - HPUX
 - Linux
 - Unix
 - Mac OS X
 - FreeBSD
 - Contemporary Windows OS’s
Demonstration

- *It’s demo time!*
AddMultiples - integers

[Bar chart showing the comparison between Single Machine and Condor in terms of operation time for different data sizes (1,000,000, 10,000,000, 100,000,000, 1,000,000,000).]
Fibonacci

- 1,000,000,000 integers
 - Single machine – 12.05 seconds
 - Condor – 7.76 seconds
Special Thanks!

- Dr. Kirk for guidance throughout the semester
- UU Computer Science Department for the computers
- Dr. Wilms for the KVM, Cart, etc.
Resources

- http://qadpz.sourceforge.net/
- http://www.naccq.ac.nz/bacit/0203/2004Caukill_OffPeakGrid_files/2004CaukillFigure1.jpg
- http://www.cs.wisc.edu/condor/