Faculty

G. Jan Wilms (1992). Associate Professor of Computer Science and Department Chair. B.A., Katholieke Universiteit Leuven, Belgium; M.A. (English), University of Mississippi; M.S. (Computer Science), University of Mississippi; Ph.D. (Computer Science), Mississippi State University.

Bryan Dawson (1998). Associate Professor of Mathematics and Coordinator of Mathematics. B.S. and M.S., Pittsburg State University; Ph.D., University of North Texas.

Richard Dehn (1969). Associate Professor of Mathematics. B.S., University of Memphis; M.A.T., Purdue University; M.S., University of Arkansas, Additional study, University of Wisconsin, University of Arkansas, University of Missouri-Rolla.

Stephanie Edge (1996). Assistant Professor of Computer Science. A.S., Middle Georgia College; B.S., West Georgia College; M.S., Georgia State University; M.Div., Southern Baptist Theological Seminary.

Chris Hail (1995). Associate Professor of Mathematics. B.S., Campbellsville College; M.A., Morehead State University; Ed.D., University of Kentucky.

Dwayne Jennings (1981). Associate Professor of Mathematics and Computer Science. B.S., Union University; M.S. (Mathematics) and M.S. (Computer Science), University of Memphis.

Matt Lunsford (1993). Associate Professor of Mathematics and Associate Dean of the College of Arts and Sciences. B.G.S., Louisiana Tech University; M.S., University of Nebraska; Ph.D., Tulane University.

Don Rayburn Richard (1983). Associate Professor of Mathematics. B.S., University of Memphis; M.A., University of Missouri; M.B.A., University of Colorado.

The Department of Mathematics and Computer Science offers majors in mathematics, computer science and digital media studies. Minors are offered in mathematics, mathematics with statistics emphasis, computer science and computer information systems.

Student Awards

The Academic Excellence Medal is awarded to the graduating senior with the highest average in the major provided the average is not less than 3.5. Before Awards Day, the student must have completed at least 15 credit hours in the major at Union University, exclusive of pass/fail courses. If no major is eligible, the medal will be given to the minor meeting the minimum requirements.
Departmental Awards are given to the 2 seniors who place first in the Major Field Achievement Test for Mathematics and Computer Science respectively. These tests are in partial fulfillment of 498.

First Year Programming Award is awarded to a computer science student by The Department of Mathematics and Computer Science. A student is selected for excellence and expertise in first year programming courses.

The Wolfram Research Inc. Award is awarded to a freshman calculus student chosen by The Department of Mathematics and Computer Science based upon demonstrated outstanding achievement, enthusiasm, ingenuity and creativity in mathematics.

Mathematics

The mathematics curriculum provides study which leads to an undergraduate major in mathematics in either the B.S. or the B.A. degree program. The offerings for the major will provide a basic foundation for beginning graduate study in mathematics, for entry into work in fields relating to mathematics, and for teaching mathematics at the secondary level.

The curriculum also provides courses in mathematics which support studies in the natural and the social sciences, in elementary school teacher preparation, in business studies, and in computer science. Students with a four-year high school mathematics program, including trigonometry, should be able to begin the calculus sequence in their first semester. Placement in calculus is based on the ACT scores and the high school record. College Algebra assumes at least two years of high school algebra, and Intermediate Algebra requires one year of high school algebra and is offered for those people not ready for College Algebra.

Students majoring or minorin in mathematics will begin their credit in the calculus courses. Algebra and trigonometry may be needed as background but do not satisfy requirements for the major or minor.

I. Major in Mathematics—35 hours
 A. MAT 205, 211, 212, 213 and 498 are required.
 B. At least 15 hours selected from: MAT 305, 314, 315, 320, 360, 405, 411, 413, or 415.
 C. The remaining 3 hours may be taken from B, or MAT 208 or CSC 115.
 D. Independent Study (MAT 495) or Departmental Special Study (MAT 395) may be used for 3 of the 15 hours required in B.
 E. Select PHY 231 for Core Science Group A.

II. Teacher Licensure in Mathematics (Grades 7-12)
 A. Major requirements as shown above to include MAT 315, 413, 208.
 B. Professional Education: EDU 150, 250, 326, 422, 433; PSY 213, 318; SE 225.
 C. Completion of applicable portions of the Praxis II.
 D. For additional information, see the Director of Teacher Education.

III. Minor in Mathematics—21 hours
 A. MAT 211 and 212 are required and one of the following: MAT 208, 205, 213; CSC 115.
 B. At least 6 hours of upper-level work is required with no more than one departmental special study allowed and no independent study allowed.
 C. The remaining must be 205 or higher.

IV. Minor in Mathematics with an Emphasis in Statistics—20 or 21 hours
 A. MAT 211 and 212
 B. MAT 208, 305, and 405
 C. One of: MAT 213, 314, 315; CSC 115.
Assessment of Majors

All senior mathematics majors must take the Major Fields Achievement Test in mathematics as one requirement for MAT 498 (see MAT 498 below). Those majors completing a teacher licensure program are required to take the PRAXIS II.

Student Organizations

Kappa Mu Epsilon is a specialized honor society in Mathematics. The chapter’s members are selected from students of mathematics who have achieved standards of scholarship, professional merit, and academic distinction. A student must have completed three semesters and rank in the upper 35%, completed three courses in mathematics, one of which must be calculus, and have a “B” or better average on all mathematics courses.

Sigma Zeta is a national honorary science society for those who have completed fifteen hours in natural science and mathematics and who have a minimum grade point average of 3.0 in these courses. Membership advantages include recognition for academic achievements by the Sigma Zeta Honor Award, participation in nationally recognized research projects, and a means of cooperation in similar areas of interest by students of different colleges.

Course Offerings in Mathematics (MAT)

() Hours Credit; F-Fall; W-Winter; S-Spring; Su-Summer

100. **Intermediate Algebra (3) F or As Needed**
Topics include exponents, radicals, factoring, linear equations, quadratic equations, and system of equations. This course is for the student who has taken only one year of high school algebra or its equivalent; others may enroll only with permission of the department. Does not apply toward the major/minor, or the Core math requirement.

101. **Fundamental Concepts (3) F, S**
This course is designed to introduce the student to problem solving strategies and the real number system. Topics will include the whole numbers, integers, fractions and decimals, ratio and proportion, percents and functions. Does not apply toward the major/minor.

107. **Mathematics for the Liberal Arts (3) F, S**
This course is designed to introduce the student to the basic concepts of several areas of mathematics including algebra, geometry, trigonometry, probability, and descriptive statistics. Does not apply toward the major/minor.

111. College Algebra (3) F, W, S
Prerequisite: Two years of high school algebra or MAT 100. Does not apply toward the major/minor.

Topics include equations in two variables, functions, graphing techniques, systems of equations and inequalities, exponential and logarithmic functions, matrices, and the theory of polynomial equations.

112. Plane Trigonometry (3) S As Needed
Prerequisite: MAT 111. Does not apply toward the major/minor.

Topics include the definition of the trigonometric functions, radian measure, linear and angular velocity, graphing techniques, trigonometric identities and equations, the inverse trigonometric functions, and solving triangles.
114. Introduction to Statistics and Probability (3) F, W, S
Prerequisite: Two years of high school algebra or MAT 100. Does not apply toward the major/minor.
Basic descriptive statistics with an introduction to inferential statistics. Topics include organization of data into frequency distribution tables and histograms, measures of central tendency, measures of dispersion (standard deviation), basic mathematical probability, continuous distributions through the normal distribution, introduction to sampling theory and hypothesis testing.

*116. Precalculus (3) F, S As Needed
Prerequisites: Two years of high school algebra and one of geometry.
An introduction to polynomial, exponential, logarithmic, and trigonometric functions and basic analytic geometry. This course is intended for students planning to take MAT 211, and is not recommended for students who have taken MAT 111 and/or 112. Does not apply toward the major/minor.

201. Calculus for Business/Social Sciences (3) As Needed
Prerequisite: MAT 111 or its equivalent.
Topics include a review of algebra principles, the development of differential calculus with an emphasis on applications of the derivative to business and to the social sciences, and a brief introduction to integral calculus with some elementary applications of the definite integral. Does not apply toward the major/minor and is not recommended for students that have taken MAT 211 and 212.

205. Discrete Mathematics (3) S, W As Needed
Prerequisite: MAT 111 or its equivalent.
Topics include elementary logic, sets, proof techniques including induction, relations and graphs, recurrence relations, basic counting techniques, equivalence relations, Boolean algebra, and algebraic structures.

208. Statistics (3) F; S—As Needed
Prerequisite: MAT 111.
An introductory course for those who plan to pursue additional courses in statistics or calculus. Topics include descriptive and inferential statistics, probability theory, binominal and normal distributions, hypothesis testing, linear correlation and regression.

211. Calculus and Analytic Geometry I (4) F, S
Prerequisite: MAT 111 and 112, or 116.
Topics include basic concepts of plane analytic geometry, functions, limits, differentiation of algebraic and trigonometric functions, applications of the derivative, the indefinite and the definite integral, and the fundamental theorem of calculus.

212. Calculus and Analytic Geometry II (4) F, S
Prerequisite: MAT 211.
Topics include integration by substitution, numeral integration, applications of the definite integral, the calculus of transcendental functions, techniques of integration, and the calculus of parametrized curves.

213. Calculus and Analytic Geometry III (4) F, S As Needed
Prerequisite: MAT 212.
Topics include infinite series, polar coordinates, vectors in three-space, functions of several variables, partial derivatives, multiple integrals, and line integrals.
305. Statistical Methods (3) S or As Needed
Prerequisite: MAT 208.
Parametric and non-parametric statistical methods with an emphasis on applications. Topics include correlation and regression, analysis of variance, Chi-square distribution, contingency tables, and applications to the social sciences, life sciences and business.

314. Differential Equations (3) S or As Needed
Prerequisite: MAT 213.
Topics include linear first-order differential equations and applications, higher-order differential equations and applications.

315. Linear Algebra (3) S or As Needed
Prerequisite: MAT 212. Corequisite: MAT 205.
Topics include systems of linear equations, matrices, determinants, linear transformations, diagonalization of matrices, and major applications to business and the sciences.

319. Introduction to Complex Variables (3) F—Even Years or As Needed
Prerequisite: MAT 213.
Topics include algebraic properties of the complex number system, complex transformations, analytic functions, complex integration, residues, and series representations of functions.

360. Numerical Analysis (3) As Needed
Prerequisite: CSC 115, MAT 205 and 213.
Topics include numerical computations, roots of equations, simultaneous nonlinear equations, linear simultaneous equations, numerical integration and differentiation, and power series calculations.

405. Mathematical Statistics (3) As Needed
Prerequisites: MAT 305 & 212.
A calculus-based introduction to the theory of probability and statistics. Topics include conditional probability and independence, random variables, mathematical expectations, discrete and continuous distributions, central limit theorem and sampling theory.

411. Introduction to Analysis (3) F—Odd Years or As Needed
Prerequisite: MAT 205 and 213.
A rigorous inquiry into sequences, limits, continuity, differentiation, and integration.

413. College Geometry (3) F—Odd Years
Prerequisite: MAT 205 and 212.
Topics include axiomatic foundations of Euclidean and non-Euclidean geometry, models for incidence geometries, and development of theorems in the geometries of the Euclidean plane and the hyperbolic plane.

415. Abstract Algebra (3) F—Even Years
Prerequisite: MAT 205 and 212.
An introduction to number theory, group theory, and ring theory. Topics include divisibility in the integers, permutation groups, homomorphisms, normal subgroups and quotient groups, LaGrange’s Theorem, ideals, and polynomial rings.

498. Mathematics Seminar (2) F
Prerequisite: 20 hours of MAT course work and Senior standing.
This course provides an appropriate setting for administering the Major Field Achievement Test, for addressing those areas of mathematics for which prior assessment indicates the need for improvement, for providing seniors an opportunity to demonstrate their awareness of the abstract nature of mathematics and its unifying principles through
oral and written presentations, and for discussion of current mathematical research. The course may be modified at the discretion of the department.

* A maximum of 6 hours MAT credit may be earned toward graduation from 111-2, 116.

Computer Science

The department offers four separate plans of study: a Computer Science major, a Digital Media Studies major, a Computer Science minor, and a Computer Information Systems minor.

Upon completion of the Computer Science Major, the student will have an understanding of and an appreciation for the interrelation of the five main areas of study in Computer Science: computer elements and architecture, programming concepts and languages, algorithms, data structures, and computer theory. The major emphasizes the practical application of basic concepts from each area; therefore, the graduate will be able to continue study in Computer Science at the graduate level, or enter the job market immediately.

The Digital Media Studies major is an interdisciplinary program joining Art, Communication Arts, and Computer Science. Its purpose is to produce a student that is aesthetically, theoretically, and technologically trained and capable of excellence in the relatively new area of the design, production, and implementation of digital communications media. Included are such areas as web page design, digital visual and aural communications strategies and theory, interactive media design, media programming, digital presentation techniques, and general technological advances in digital communications.

The 21-hour Computer Science Minor is intended for those students interested primarily in pursuing a career in computer science or in a related field immediately upon graduation.

The 21-hour Computer Information Systems Minor will provide the student with a general understanding of analysis, design, and implementation of applications via third- and fourth-generation programming languages and pre-written packages. This minor is intended for the student expecting to use computers in a job-supportive mode.

Neither CSC 105 nor 245 nor any Management Information Systems (MIS) course is applicable to any major/minor in the Math and Computer Science Department.

I. Major in Computer Science—41 hours

B. Select two: CSC 335, 360, 395, 411, 465.

C. Prerequisites: MAT 211-2, 205, 315.

II. Digital Media Studies Major

A. Core requirements for all emphases—39 hours
 1. ART 120, 221, 231, 345
 2. COM 220, 320, 365, 419
 3. CSC 115, 321, 360, 365
 4. Digital Media Studies Seminar 490

B. Computer Science Emphasis requirements—23 hours
 1. CSC 125, 235, 305, 335, 425, 498
 2. Select two courses: CSC 205, 395, 411, 455

C. Art Emphasis—22 hours
 See Art Department for complete details

D. Communication Arts Emphasis—24 hours
 See Communication Arts Department for complete details.
III. Minor in Computer Science—21 hours
 A. Required: CSC 115, 125, 235, 260, 311.
 B. CSC 205 or 305.
 C. Select one: CSC 321, 335, 360, 365, 395, 411, 425, 455, 465, or additional course from B.

IV. Minor in Computer Information Systems—21 hours
 A. Required: CSC 115, 125, 235.
 B. Select 4: CSC 321, 360, 365, 395, 411.

Assessment of Majors

All senior computer science majors must take the Major Field Achievement Test in computer science as one requirement for CSC 498 (see below).

Student Organizations

The ACM (Association for Computing Machinery) Student Chapter is composed of students who are interested in today’s world of computing. The club promotes an increased knowledge of the science, design, development, construction, languages, and applications of modern computing machinery. It provides a means of communication between persons interested in computing machinery and their applications.

Course Offerings in Computer Science (CSC)

() Hours Credit: F-Fall; W-Winter; S-Spring; Su-Summer

105. Survey of Microcomputing Applications (3) F, S
An introduction, for the non major/minor, to computers and their applications. A study of types of hardware associated with computer systems and how computers function, with an emphasis on the use of applications programs for microcomputers. Software packages will include word processing, an electronic spreadsheet, a database management system and an internal component.

115. Computer Science I: Introduction & Overview (3) F, S
An introductory course which exposes majors/minors to the breadth and interrelationships of future courses in the field and empowers students of other majors for a continuous exploration of today’s technical society. A language-independent overview of hardware and software with emphasis on problem solving and algorithm development.

125. Computer Science II: Programming in Java (4) F, S
Prerequisite: CSC 115.
Basic concepts of problem solving, algorithm design and analysis, abstract data types, and program structures. GUI development will be introduced and the object-oriented programming paradigm will be emphasized. Students will design, implement, debut test and document programs for various applications.

205. Computer Science III: Algorithms & Data Structures (3) F, S
Prerequisites: CSC 125, MAT 205. Corequisite: MAT 212.
A study of the complexity of algorithms and advanced data structures, including trees and graphs. Tools for analyzing the efficiency and design of algorithms, including recurrence, divide-and-conquer, dynamic programming, and greedy algorithms.

235. Computer Ethics (2) S
Major social and ethical issues in computing, including impact of computers on society and the computer professional’s code of ethics.
245. FORTRAN (3) As Needed
Prerequisite: CSC 115 and MAT 211.
The structures of FORTRAN will be studied: statements, subprograms, simple vari-
ables, arrays, and files. Design, coding, and testing of scientific problems will empha-
size these structures. In addition, various implementations of FORTRAN will be dis-
cussed.

260. Digital Systems (3) F
Prerequisite: CSC 125 and MAT 205.
Binary codes, Boolean algebra, combinational logic design, flip-flops, counters, syn-
chronous sequential logic, programmable logic devices, MSI logic devices, and adder
circuits.

305. Programming in C (3) S
Prerequisites: CSC 125 and MAT 205.
Builds on the foundation of CS I & II, introducing the C command set and advanced
data structures and algorithms.

311. Computer Architecture (3) S
Prerequisite: CSC 260.
Introduction to the architecture of stored-program digital computer systems including
processor and external device structures and operation, machine operations and in-
structions, and assembly language concepts and programming.

321. Database Management Systems (3) F
Prerequisites: CSC 115 and Junior standing.
A hands-on approach to the design of databases: conceptual design using the E-R model
and logical design using the relational model. The architecture of a database applica-
tion is discussed including the 3-tiered model and web access. Queries, forms, reports
and application general will be studied by implementing them in a client-server envi-
ronment.

335. Computer Graphics (3) F—Even Years
Prerequisites: CSC 305; MAT 315 recommended.
This course is designed to investigate a wide range of computer graphics via program-
ing techniques. Topics included in the course will be graphic display theory, graphic
techniques, applications, and hardware.

360. Web Building & Site Management (3) S
Prerequisites: CSC 125 & 321.
Fundamental concepts of web site development and management, graphical web-build-
ing tools, multi-level site planning and construction, navigation schemes, client- and
server-side scripting, basic interactivity, information organization, web site manage-
ment, and the delivery of basic multimedia content.

365. Data Communications and Networking (3) S
Prerequisite: CSC 115 and Junior standing.
Introduction to the hardware and software components of computer data communica-
tions and networking. Emphasis is on practical, hands-on set-up, and administration of
a LAN, peer-to-peer networking, and the TCP/IP protocol. Topics include routing, shared
file and application access, remote printing, and security.

411. Systems Analysis (3) As Needed
Prerequisite: CSC 321.
The process of designing computer-based systems for business applications will be stud-
ied. Tools and techniques of systems development and management will be discussed,
as well as advantages and disadvantages of conversion from existing systems to new
systems.

425. Operating Systems (3) F
Prerequisites: CSC 305, 311, and 365.
Systems resource management: brief historical overview and case studies; discussion of
multi-tasking and related concepts of scheduling, interprocess communication and
mutual exclusion/deadlock; overview of file management and memory management
(virtual memory, paging, swapping, and segmentation). Theory is augmented by de-
tailed study of implementation of an existing operating system.

455. Programming Languages (3) S
Prerequisite: CSC 305.
Issues in programming language design, specification, and implementation: overview
and comparison of major contemporary languages; analysis of translation process (in-
terpreters and compilers) with focus on grammars and Chomsky hierarchy; investiga-
tion of data representation and binding, and of sequence control, including discussion
of logic and object oriented paradigms. Theory is augmented by the implementation of
a tokenizer and parser for a simple language.

465. Formal Language (3) F—Odd Years
Prerequisites: CSC 305, MAT 315; recommended: CSC 455.
Introduction to the theoretical foundations of computer science including formal lan-
guages and automata, parsing of context-free languages, Turing machines, computabil-
ity and complexity.

490. Digital Media Studies Senior Seminar (3) F, S
Capstone course for DMS majors to bring the emphases together for exposure to the
variety of fields of digital media and associated workplace cultures. Includes case stud-
ies, guest speakers, field trips and an interdisciplinary group project culminating in the
production of a computer-based portfolio for job search. Reciprocal with ART and COM.

498. Computer Science Seminar (2) S
Prerequisite: 20 hours of CSC and Senior standing.
This course provides a setting for administering the Major Field Achievement Test and
addressing topics in Computer Science for which the department perceives the need for
additional instruction. Students will have an opportunity to synthesize previously
learned concepts by developing and implementing a solution to a real-world program-
ming problem. Each project will culminate in a report presented at a regional confer-
ce. The course may be modified at the discretion of the department.

Available in each departmental prefix:
195-6-7. Special Studies (1-4) On Demand
Lower-level group studies which do not appear in the regular departmental offerings.

395-6-7. Special Studies (1-4) On Demand
Upper-level group studies which do not appear in the regular departmental offerings.

495-6-7. Independent Study (1-4) On Demand
Individual research under the guidance of a faculty member.

499. Seminar (1-3)
To be used at the discretion of the department for majors only.