DEPARTMENT OF BIOLOGY
COLLEGE OF ARTS AND SCIENCES

Faculty
James Kerfoot, Jr. (2009). Professor of Biology and Department Co-Chair. B.S. and M.S., Southern Illinois University Edwardsville; Ph.D., Florida Institute of Technology.

James Marcus Lockett (2004). Professor of Biology and Department Co-Chair. B.S. and M.S., Murray State University; Ph.D., University of Tennessee.

Mark Bolyard (2006). Associate Dean of Arts and Sciences and University Professor of Biology. B.A., Hanover College; Ph.D., University of North Carolina; Additional study, Michigan State University; Penn State College of Medicine.

Jeremy Blaschke (2015). Associate Professor of Biology. B.S., Bryan College; M.S. and Ph.D., University of Tennessee, Knoxville.

Robert S. Bowen (2022). Professor of Biology. B.S., Northern Michigan University; MGIS, University of Minnesota; M.S., Northern Michigan University; Ph.D., University of North Carolina Charlotte; Additional Study, Virginia Polytechnic Institute and State University.

Euna (Esther) Choi (2016). Associate Professor of Biology. B.S. and M.S., Hallym University (Chuncheon, South Korea); Ph.D., University of Illinois; Additional Study, University of Nebraska.

Micah Fern (2018). Assistant Professor of Biology. B.S., Union University; M.S. and Ph.D., Auburn University.

Andy Madison (2002). Professor of Biology. B.S., University of Tennessee; M.S., University of Kentcky; Ph.D., Kansas State University.

Tamara Popplewell (2008). Assistant Professor of Biology. B.S. and M.A.Ed., Union University; M.S., Mississippi State University.

Michael Schiebout (2012). Professor of Biology. B.A., Dordt College; M.S. and Ph.D., University of Northern Colorado.

William Thierfelder (2014). Associate Professor of Biology and Director of the Hammons Center for Scientific Studies. Sc.B, Brown University; Ph.D., University of Pennsylvania; Additional study, St. Jude Children’s Research Hospital.

Faith A. Zamamiri-Davis (2011). Associate Professor of Biology. B.S., Westmont College; Ph.D., Pennsylvania State University; Additional study, St. Jude Children’s Research Hospital.

Instructional Staff

Mary (Meg) Nethery (2020). Laboratory Specialist. M.S. in Physical Therapy, University of Tennessee Health Science Center, Memphis; B.S., Union University.

Staff
Laura Hailey (2020). Academic Secretary—Biology and Chemistry, and Biology Program Coordinator. B.S., Union University.

Curriculum
The curriculum in biology is designed to acquaint students with living organisms as whole, functioning entities that, in their diversity, share many common features. In addition to providing the scientific background required of all educated citizens, the courses provide a foundation upon which the student may build a graduate program, undertake training in health-related or other professions, or prepare for secondary-level science teaching. Students participate in independent research as well as specific courses.

Because contemporary biology leans heavily on mathematics and physical sciences, students majoring in biology will be encouraged to learn mathematics, statistics, chemistry, and physics. In the freshman year, students in BIO 112 will build a foundation for study of biological processes. Students can proceed to the first 200-level biology course during the second semester of the freshman year. In the sophomore year, students will continue to survey the kingdoms of life by taking additional 200-level biology courses. Students should strengthen their understanding of mathematics and obtain a background in organic chemistry as appropriate. Biology courses at the 300-400 level should be taken during the junior and senior years.

General Biology, Botany, and Zoology majors are required to complete a minor and are encouraged to minor in chemistry. Conservation Biology and Cell and Molecular Biology majors are exempt from the minor requirement.

Conservation Biology Majors may meet the requirements to become a Certified Wildlife Biologist by taking twelve hours of communication. The General Core requirement for COM 112 and electives of COM 121 and COM 235 may be used to fulfill 9 hours of this requirement. The remaining hours may be selected in consultation with the student’s assigned faculty advisor.

I. Major in General Biology—42 hours
1. BIO 112, 210, 211, 215, 315, 318 or 328—24 hours
2. Four 300-level BIO courses—14 hours minimum
3. BIO 425, 426, 437, 498—4 hours
(Majors are required to take CHE 111 from Group A list of laboratory science options in the general core.)
II. Major in Zoology—43–44 hours
1. BIO 112, 200, 210, 211, 301, 312, 316, 336–32 hours
2. Select one from: BIO 304, 310, 315, 317, 323, 325, 326–4 hours
3. Select one from: BIO 318 or 328, 329, 356, 357–3 or 4 hours
4. BIO 425, 426, 437, 498–4 hours
(Majors are required to take CHE 111 from Group A list of laboratory science options in the general core.
CHE 112 is also a prerequisite for BIO 316.)

III. Major in Cell and Molecular Biology—72–73 hours
1. BIO 112, 211; 210 or 215—12 hours
2. BIO 315, 323, 325, 397—15 hours
3. Three of BIO 307, 309, 310, 316, 317, 320, 326—12 hours
4. One 300-level BIO Elective—3 or 4 hours
5. CHE 111, 112, 314, 315, 326, 319, 329—26 hours
6. BIO 425, 426, 437, 498—4 hours
7. No minor is required.

IV. Major in Conservation Biology—66–68 hours
1. Prerequisites or Corequisites: CHE 111; 2 MAT courses 111 or higher
2. BIO 112, 200, 210, 215; PHY 112 or higher—20 hours
3. BIO 303, 304, 305, 318 or 328, 335, 355–20 hours
4. BIO 425, 426, 437, 498–4 hours
5. Two of BIO 337, 358, 359—8 hours
6. Four of BIO 301, 312, 315, 329, 336, 356, 357–14–16 hours
7. No minor is required.

V. Major in Botany—42–44 hours
1. BIO 112, 211, 215, 329, 337, 358, 359–28 hours
2. Select three electives (at least one from each group):
 Group A: BIO 304, 318 or 328, 355
 Group B: BIO 315, 323, 325
3. BIO 425, 426, 437, 498–4 hours
(Majors are required to take CHE 111 from Group A list of laboratory science options in the general core.)

VI. Major in Biology with Discipline-Specific Honors
The Biology Discipline-Specific Honors program offers advanced training in laboratory and library research through completion of contract courses with expanded requirements, an original research project, as well as colloquium attendance.

Application Timeline/Process
• At least three full semesters, preferably four, must remain before graduation
• Applications are submitted to the Office of the Director of the Honors Community after the student has met with the Chair of the Department of Biology

Admission Requirements
• Minimum GPA of 3.50 both overall and in Biology
• Completion of at least one semester at Union prior to application
• Completion of 16 credit hours applicable toward the Biology major including BIO 112 and at least one 300-level BIO course.

Progression
• Maintain at least a 3.50 GPA both overall and in Biology
• Complete each honors contract course with a B or better

A one-time, one-semester probation will be allowed to correct a deficient GPA. If the deficiency is not corrected, the student will be dismissed from the Honors program. A one-time, one-semester probation also will be allowed for students failing to meet other expectations, as determined by their thesis advisor and/or Biology Chair. Appeals may be instituted by students in the manner stipulated in the Student Handbook. Application forms may be obtained from the Department Chair.

Honors Requirements
Accepted students will
1. Complete 12 hours of contract courses, selected from among the 300-level biology courses that count toward the Biology major, by entering into a contract with the instructor of each chosen course that outlines the additional course requirements
2. Students in their junior and senior years must satisfy Honors colloquium requirements as determined and published by the directors of the Honors Community.
3. Design and complete an honors project/thesis that will lead to either an off-campus presentation or to a paper suitable for submission to an appropriate professional journal. This project meets the research requirement for all Biology majors.
Assessment of Majors

Biology majors are required to take two terminal courses as a requirement for graduation: BIO 419, Research Experience for Educators or BIO 437 Research Experience; and BIO 498, Seminar. The Department may administer the Major Field Examination, or a Senior Exit Questionnaire to senior biology majors in BIO 419 and 437.

Student Organizations

Biologists In Observation of the Master’s Earth, BIOME, serves students interested in exploring the world of biology beyond the classroom. BIOME is designed primarily for biology majors and minors but is open to anyone with an interest in biology.

Course Offerings in Biology (BIO)

() Hours Credit; F–Fall; S–Spring; Su–Summer

100. Survey of Biological Concepts (4) F, S
A course for non-science majors focused on the basic ideas to enable students to appreciate the living world and their relationship to it. Topics: the cell, genetic basis of life, biodiversity, survey of the 5 kingdoms of life, ecology, and the environment. Three hours lecture and 2 hours laboratory/week. No credit toward BIO major/minor.

110. Global Biology (4) S
A course for non-science majors focused on global issues in biology, including global diversity, global health, agriculture and biotechnology, and the interactions between humans and nature. Three hours lecture and 2 hours laboratory/week. No credit toward BIO major/minor.

112. Principles of Biology (4) F, S
A study of the basic characteristics of organisms, dealing with structure, function, reproduction, and ecology. Three hours lecture and 3 hours laboratory/week. Restricted to majors/minors.

200. Introduction to Conservation Biology (4) S
Prerequisite: BIO 100 or 112.
Biological concepts involved in fisheries and wildlife biology, their application in practice, and exploration of contemporary issues facing the organisms, habitats, and human consumers. Three hours lecture and 3 hours laboratory/week.

201. Survey of Microbiology (4) S
Pre or Corequisites: BIO 221 and BIO 222.
Emphasis on observation, growth, identification and control of microbes with focus on selected microbial diseases. Four hours lecture per week to include lab demonstrations and simulations. No credit toward BIO major/minor.

210. Zoology (4) F, S
Prerequisite: BIO 112.
Classification, morphology, physiology, and ecology of vertebrate and invertebrate animals. Three hours of Lecture and 3 hours of laboratory/week.

211. Microbiology (4) F, S
Prerequisite: BIO 112; students who have completed BIO 201 with a grade of B or better may take BIO 112 as a co-requisite.
Classification, morphology, physiology, and ecology of bacteria and viruses, with special emphasis on bacteria. Three hours lecture and 3 hours laboratory/week.

215. Botany (4) F
Prerequisite: BIO 112.
Classification, morphology, physiology, and ecology of the algae, fungi, bryophytes, and vascular plants. Three hours lecture and 3 hours laboratory/week.

221. Human Anatomy and Physiology I (4) F, Su
The first semester of a 2-semester course for nursing, physical education, and allied health students. Body systems studied include the integumentary, nervous, skeletal, and muscular. Three hours lecture and 2 hours laboratory/week. No credit toward BIO major/minor.

222. Human Anatomy and Physiology II (4) S, Su
A continuation of BIO 221. Systems studied include: urinary, cardiovascular, lymphatic, endocrine, digestive, and respiratory. Three hours lecture and 2 hours laboratory/week. No credit toward BIO major/minor.

300. Pathophysiology (3) F, S
Prerequisites: BIO 221 and 222.
Study of various states of altered health. Topics: stress, shock, altered acid-base balance, altered fluid and electrolyte balance, neoplasia, hypertension, immunodeficiency, genetic disorders, altered cardiac rhythms, renal failure and uremia. No credit toward a BIO major/minor.

Union’s Biology department has formed a local chapter of Tri-Beta, which is an honorary society for students, particularly undergraduates, dedicated to improving the understanding and appreciation of biological study and extending boundaries of human knowledge through scientific research (www.tri-beta.org).

Student Awards

The Biology Research Award is given by the faculty of the Department of Biology to the student in BIO 437 who presents the best research paper of the year, based on an original piece of work.

Whiteaker Freshman Biology Award. The Department selects a freshman major or minor based on outstanding scholastic achievement, financial need, Christian service, and school spirit.
301. Invertebrate Zoology (4) F–Even Years
Prerequisites: BIO 112, 210, and a 4 hour BIO course applicable to the BIO major.
Students will develop practical vocational skills by working within a framework of designing, performing, and communicating novel scientific research as we explore the diversity, natural history, physiology, and behavior of invertebrate animals. Three hours lecture and 3 hours laboratory/week.

303. Natural Resources Policy (3) F–Odd Years
Prerequisites: BIO 112, 200, and a 4 hour BIO course applicable to the BIO major.
Examines current laws and policies governing public and private lands and the conservation of wildlife in the United States.

304. Experimental Design and Biostatistics (4) F
Prerequisites: 12 hours of BIO courses applicable to the BIO major; MAT 111 or higher (MAT 114 or 208 recommended).
Introduces students to the basic concepts and techniques underlying statistical analysis of data in a biological context. Students will be given the opportunity to identify a variety of biological problems, develop specific questions, design and conduct experiments to address these questions, formulate and test hypotheses, choose and run the appropriate statistical test, and interpret the outcomes of such test. Three hours lecture and 3 hours laboratory/week.

305. Conservation Techniques (3) S–Even Years
Prerequisites: BIO 112, 200, and a 4 hour BIO course applicable to the BIO major.
A field intensive introduction to techniques for determining the age of many species, trapping for population assessments, terrestrial and aquatic sampling methods, methods for assessing population health through necropsies, and habitat management techniques. One hour lecture and 6 hours laboratory/week.

307. Advanced Human Anatomy and Physiology I (4) F
Prerequisites: BIO 112, 210 and a 4 hour BIO course applicable to the BIO major.
The 1st of a 2-semester sequence designed primarily for science majors seeking to establish a knowledge base of human anatomy and physiology. Body systems studied include the integumentary, skeletal, muscular, and nervous systems. Three hours lecture and 3 hours laboratory/week.

309. Advanced Human Anatomy and Physiology II (4) S
Prerequisite: BIO 307.
A continuation of BIO 307 studying body systems: endocrine, cardiovascular, respiratory, urinary, digestive, and lymphatic. Three hours lecture and 3 hours laboratory/week.

310. Histology (4) As Needed
Prerequisites: BIO 112 and 8 hours of BIO courses applicable to the BIO Major.
The branch of anatomy that deals with structure, composition, design and function of body tissues as it relates to the principles of physiology, biochemistry, molecular biology and medicine. Three hours lecture and 3 hours laboratory/week.

312. Comparative Vertebrate Anatomy (4) F–Odd Years
Prerequisites BIO 112, 210, and a 4 hour BIO course applicable to the BIO major.
Study of the similarities of anatomy and early development of vertebrates, complemented by dissection of representative adults. Three hours lecture and 3 hours laboratory/week.

313. Forensic Biology (4) S–Odd Years
Prerequisites BIO 112, 211, 221; SOC 308; CHE 314, 324.
An introduction to biological applications in forensic science. The course will include the following topics: DNA extraction and PCR analysis, DNA databases and species identification, entomology, anthropology, toxicology, serology, microscopy, botany, histology, and the collection and preservation of biological specimens. Three hours lecture and 3 hours laboratory/week.

315. Genetics (4) S
Prerequisites: BIO 112, BIO 211, and a 4 hour BIO course applicable to the BIO major. [For Forensic Science majors only, alternative prerequisites are BIO 112, BIO 211, BIO 221, CHE 314, and CHE 324]
A study of the principles of heredity including both classical and molecular genetics. Three hours lecture and 3 hours laboratory/week.

316. Physiology (4) S
Prerequisite: BIO 112, 8 hours of BIO courses applicable to the BIO major, CHE 111-112. BIO 210 and CHE 314 are recommended.
A study of the principles of physiology, emphasizing metabolic processes common to many organisms. Three hours lecture and 3 hours laboratory/week.

317. Developmental Biology (4) F–Odd Years
Prerequisite: BIO 112 and 8 hours of BIO courses applicable to the BIO major. BIO 210 is recommended.
A study of development in organisms, including both classical, descriptive embryology and contemporary investigations of processes involved in morphogenesis and differentiation. Three hours lecture and 3 hours laboratory/week.

318. Ecology (4) S
Prerequisite: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
A study of the interactions between organisms and their biological and physical environments. Three hours lecture and 3 hours laboratory/week.
320. Immunology (4) F
Prerequisites: BIO 112, 211, and a 4 hour BIO course applicable to the BIO major; CHE 314/324 is recommended. Structure and function of the immune system and some diseases related to the immune system. Laboratory will focus on a group research project. Three hours lecture and 3 hours laboratory/week.

322. Human Gross Anatomy (3) S
Prerequisites: BIO 221 and 222 or 210. Cadaver anatomy and dissection for nursing, preprofessional, and physical education students to enhance understanding of anatomy and prepare for work on living humans.

323. Cell Biology (4) S
Prerequisite: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
A study of biological systems at the cellular and subcellular levels emphasizing functional aspects such as protein procession and sorting, membrane systems, energy generation in mitochondria and chloroplasts, and cell signaling. Three hours lecture and three hours laboratory/week.

325. Molecular Biology (4) F
Prerequisites: BIO 112, 211 and a 4 hour BIO course applicable to the BIO major; CHE 314/324 is recommended. [For Forensic Science majors only, alternative prerequisites are BIO 112, BIO 211, BIO 221, CHE 314, and CHE 324]
Basic principles of molecular biology focusing on recombinant DNA methods as applied to a variety of biological questions. Students will learn basic research laboratory skills through a wide range of methods from gel electrophoresis to subcloning. Three hours lecture and three hours laboratory/week.

326. Neurobiology (4) As Needed
Prerequisites: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
This course is designed to provide an overview regarding the mechanisms of neurobiology in a wide variety of organisms. Students will gain a better understanding of how several neurological processes occur including electrical signaling of nerve cells, synaptic transmission, synaptic plasticity, pain, movement, sleep, memory, repair and regeneration. Three hours lecture and 3 hours laboratory/week.

328. Tropical Ecology (4) Su—Even Years
Prerequisites: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
This field course is designed to showcase the basic flora and fauna of the tropics and review ecological principles within these unique tropical environments. Lectures and labs focus on the nature of life in tropical climates with specific emphasis on coral reefs, tropical rainforests, mangrove swamps, and seagrass communities. Through learning activities students review taxonomic diversity, form and function, ecological roles, and adaptations of representative tropical organisms. Topics include: adaptation to disturbance, physiological mechanisms, loko-motion and migrations, defenses against predation, sensory reception, productivity, feeding, biodiversity, reproduction and symbiosis through the lens of tropical ecosystems. Three hours lecture and 3 hours laboratory/week.

329. Environmental GIS (4) F—Odd Years
Prerequisites: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
This course is an introduction to GIS (Global Information Systems) in the context of applications that focus on the environment, conservation biology, and ecology. Main topics covered during the semester will include the historical development of GIS technology, its application, and its theoretical background. Students will develop skills and competency using GIS software and data collection tools. They will apply program knowledge and skills to investigate questions related to ecology, wildlife management, conservation biology, and natural resource management. Three hours lecture and 3 hours laboratory/week.

335. Wildlife Management (3) S—Even Years
Prerequisites: BIO 112, 200, and a 4 hour BIO course applicable to the BIO major.
A study of the principles of conservation and wildlife management. Examines the ecology of species of interest and the habitat manipulation techniques used in the conservation of such organisms.

336. Ecology and Conservation of the Vertebrates (4) F—Even Years
Prerequisites: BIO 112, 210 and a 4 hour BIO course applicable to the BIO major.
Study of the natural history and ecology of North American vertebrates, including fish, amphibians, reptiles, birds and mammals. Conservation concerns of particular vertebrates will be examined. Three hours lecture and 3 hours laboratory/week.

337. Taxonomy of the Vascular Plants (4) S—Even Years
Prerequisites: BIO 112, 215 and a 4 hour BIO course applicable to the BIO major.
A study of the vascular plants of the eastern United States, focusing on the common herbaceous plants, vines, shrubs, and trees and their identification in the field. Field trips required. Three hours lecture and 3 hours laboratory/week.

355. Environmental Ethics (3) F—Odd Years
Prerequisite: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
This course will examine the relationship between humans and their natural environment; addressing the problems confronting the necessity to balance conservation with human need and the use of natural resources. Topics to be explored include an ethical consideration for the urban environment and of wilderness preservation, the interplay of local and global environmental ethics, and the ethics of sustainability. An overarching view of the scope of historical and modern bioethical issues will also enter into our discussions.

356. Marine Biology (3) As Needed
Prerequisite: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
Lectures and labs on the nature of life in the ocean and in coastal environments. The first part of the semester is spent at Union University facilities and the second part is spent exploring the coastal environments of South Georgia and the Atlantic Coast of Florida. There is an extra fee associated with this class.
357. Ornithology (3) As Needed
Prerequisite: BIO 112 and 8 hours of BIO courses applicable to the BIO major.
Focuses on the identification and ecology of birds in the eastern United States. Multiple field trips are required, culminating with a trip to South Georgia and Florida. There is an extra fee associated with this class.

358. Plant Physiology (4) F-Even Years
Prerequisites: BIO 112, 215, 4 additional BIO hours applicable to the BIO major, and CHE 111 (CHE 112 recommended). Study of physiological factors influencing the chemical and structural composition of plant absorption and utilization of water and minerals; photosynthesis, translocation, respiration, nitrogen metabolism; and growth and development. Physiology is the study of how plants function, including resource acquisition, energy creation and use, resource allocation, life cycle, and stress response. Three hours lecture and three hours laboratory/week.

359. Dendrology (4) F-Odd Years
Prerequisites: BIO 112, 215, and 4 additional BIO hours applicable to the BIO major. This course will focus on the identification and management of trees, focusing on forest ecology and silvicultural practices. The laboratory will include field trips that will focus on tree identification. Three hours lecture and three hours laboratory/week.

419. Research Experience for Educators (2) As Needed
Prerequisites: EDU 305; Junior Standing; 20 hours of BIO courses applicable to the Biology major; Minimum BIO GPA 2.0.
An introduction to the skills necessary to conduct scientific research. Each student will develop a research question and explore research addressing that questions. Students will attend all scheduled presentations. Course is not available by audit.

425. Introduction to Research (1) F, S
Prerequisites: Junior Standing, 20 hours of BIO courses applicable to the BIO major, minimum BIO GPA of 2.0.
An introduction to the skills necessary to conduct scientific research, prepare a manuscript and make a presentation at a scientific meeting. Each student will develop and submit a research proposal for approval. Students will attend all scheduled presentations. Course not available by audit.

426. Research Experience I (1) F, S
Prerequisites: BIO 425 or 419, minimum BIO GPA of 2.0.
Individual research in accordance with the proposal developed and approved in 425. Students will attend all scheduled presentations. Course is not available by audit. Students may only take this course during summer if the student is also registered for Short Term Research Experience (428) for a fall or spring semester.

428. Short Term Research Experience (1) Su
Prerequisites: BIO 425 and minimum BIO GPA of 2.0; Research conducted during summer term. Does not substitute for BIO 426. Course is graded Pass/Fail and is not available for audit.

437. Research Presentation (1) F, S
Prerequisites: BIO 426, minimum BIO GPA of 2.0.
Presentation of results of 426 as a publishable manuscript, poster, and oral presentation. Not available by audit.

498. Biology Seminar (1) F, S
Prerequisites: 20 hours of BIO courses applicable to any BIO major, minimum BIO GPA of 2.0, and junior standing.
Students will develop proficiency in searching biological literature, writing a well-constructed summary of primary literature, and making an oral presentation of primary literature and data analysis. Students will improve their critical thinking skills and their ability to evaluate and explain data. Students will also engage in meaningful discussions with other students and Biology Faculty on a number of relevant biological topics.

Course Offerings for Au Sable Institute of Environmental Studies

The following courses are taught only at AuSable Institute. In addition, other courses are taught at AuSable Institute. See their catalog for course descriptions of courses currently offered at www.ausable.org:

Land Resources (4)
A systems-level perspective on land forms and ecosystems. Includes analysis and interpretation of field data, remote-sensing data derived from satellites and aircraft and geographic information systems (GIS), including field trips to and analysis of forests, wetlands, lakeshores, and rivers. Includes application to policy and land use planning. Prerequisite: one year of introductory science.

Lake Ecology and Management (4)Field study of lakes and other freshwater systems with applications to planning and management. Investigates representative lakes, streams, and wetlands of the region and develops prescriptions for stewardship of these water resources.

Environmental Applications for Geographic Information Systems (4)
Theory and application of spatial analysis for applied social and ecological problem-solving. This course combines GIS field data collection; ArcGIS use for storage, processing, interpretation, and presentation of data; location and integration of existing source information; and remote sensing integration with GIS applications. The course is designed around an environmental project to apply GIS techniques for real-world problem-solving in protecting and restoring ecosystems.
Restoration Ecology (4)
Ecological and theoretical foundations for ecosystem and biotic community restoration. This course develops ecological principles for ecosystem restoration and applies them to redeeming and restoring degraded and damaged ecosystems and endangered species. Field studies include analysis of restoration and rehabilitation work with the Kirtland Warbler, an officially designated wild river, coastal dunes, kettle-hole bogs, deforested lands, degraded residential and farming sites, and abandoned oil wells. A practical field laboratory is included in which techniques are applied to a specific site. Prerequisite: one year of biology and one course in ecology or field biology, or permission of professor.

179-279-379-479. External Domestic Study Programs (1-3) As Needed
All courses and their applications must be defined and approved prior to registering.

179PF-279PF-379PF-479PF. External Domestic Study Programs (Pass/Fail) As Needed
All courses and their applications must be defined and approved prior to registering.

180-280-380-480. Study Abroad Programs (1-4)
All courses and their application must be defined and approved prior to travel.

180PF-280PF-380PF-480PF. Study Abroad Programs (Pass/Fail) As Needed
All courses and their applications must be defined and approved prior to travel.

195-6-7. Special Studies (1-4)
Lower-level group studies that do not appear in the regular departmental offerings.

395-6. Special Studies (1-4)
Upper-level group studies that do not appear in the regular departmental offerings.

397. Special Studies in Cell and Molecular Biology (3) S
Upper-level group studies that do not appear in the regular departmental offerings.

495-6-7. Independent Study (1-4)
Individual research under the guidance of a faculty member(s).