
EVALUATING
COMMERCIAL WEB
APPLICATION SECURITY
By Aaron Parke

Outline
• Project background – What and why?

• Targeted sites
• Testing process
• Burp’s findings
• Technical talk
• My findings and thoughts
• Questions

Project Goals
• Test the security of several commercial web sites using

Burp Suite
• Compare the security of these sites to one another
• Present solutions to any issues found on the sites as if

hired by the companies to test their security
• Provide information about web application security in

general
• Improve personal skills and understanding of web

application security

What Is Web Application Security?
• Applications accessed through Web pages

• Think online ordering, online forms, etc.
• Web applications have the potential for all kinds of

security issues
• Risks to users
• Risks to companies

• Web application security involves testing sites for issues
attackers could take advantage of
• Typically, testing a site means seeing how you can manipulate it

yourself
• Looking at it from an attacker’s point of view

What Is Burp Suite?
• Burp Suite is a set of tools used to expose web

application vulnerabilities sold by Portswigger Web
Security

• Proxy, Spider, and Scanner
• Burp has a great reputation, consistently given high

ratings in the industry
• Big reason I chose Burp

Targeted Sites
• Target
• Walmart
• Jet’s Pizza
• Imo’s Pizza

Target
• Large company and very large site

• Over 2500 pages scanned
• Previous security issues

Walmart
• Similar company to Target
• Another huge company with a very large site

• Similar number of pages scanned, around 2500

Jet’s Pizza
• Regional pizza chain
• Medium-sized company and site
• Around 900 pages scanned

Imo’s Pizza
• Similar company to Jet’s
• Smaller site

• 670 pages scanned

Testing Process
• Burp Proxy
• Burp Spider
• Burp Scanner
• Manual confirmation

Burp Proxy
• Proxy listener

• Local HTTP server that listens for incoming connections from
browser

• Configured to work with Firefox
• Inspects each HTTP request and response
• User must manually advance through each request

Burp Proxy

Burp Spider
• Basic web crawler
• Creates a map of a site by following all links and

submitting forms
• Used to find all pages of a domain

• Sent to Scanner

Burp Spider

Burp Scanner
• Checks for common vulnerabilities

• For example, Burp will check each page for the possibility of XSS
by sending a payload of random numbers and seeing how the
application responds

• The Scanner gives ratings for both severity and
confidence
• Severity – Informational, Low, Medium, High
• Confidence – Tentative, Firm, Certain

Burp Scanner

Burp Scanner

Manual Confirmation
• This is where the bulk of the work comes in – Burp

informs users some vulnerabilities may be false positives,
and the only way to find them is to test for the issues
manually

• Checked for:
• XSS

• Reflected
• DOM-based

• Xpath Injection
• LDAP Injection
• HTTP Response Header Injection
• Other less severe vulnerabilities

Initial Results

SQL Injection
• Open Web Application Security Project (OWASP)

definition:
• A SQL injection attack consists of insertion or "injection" of a SQL

query via the input data from the client to the application.
• On a site where a user could enter their username to see

their information, the SQL statement sent to the server
might look like:
• SELECT * FROM table WHERE user = ‘input’;

• This statement could be injected with the following input
to retrieve information for all users:
• ‘ OR ‘2’=‘2

SQL Injection
• Which would send this statement to the server:

• SELECT * FROM table WHERE user = ‘’ OR ‘2’=‘2’;
• Escape characters
• Risks of SQL injection testing
• In several cases, Burp suspected SQL vulnerabilities in

spots where it could be tested nonintrusively

Target SQL Injection

• Burp suspected SQL vulnerabilities through HTTP

headers or parameters on 21 pages

• Tested without the risk of dropping or modifying tables

• Entered ‘ as value for parameter in first request and received error,

‘’ as value the second time with no error

• Using www.hurl.it to modify and send HTTP requests, I

was able to duplicate these results on 15 of the pages

• These elements are likely vulnerable to SQL injection

http://www.hurl.it/

Walmart SQL Injection
• Burp tried a similar nonintrusive technique on some of

Walmart’s parameters and cookies and suspected
vulnerabilities on 658 pages
• The advisory message read that the “two requests resulted in

different responses”
• None of the reported instances were accurate

• Entering “or true” values generated an Access Denied error,
whereas Target gave a general error in completing the request

• Entering “or false” the site behaved normally
• Could be viewed as concerning that it’s possible to exit

the correct context, but it would not be possible to read
any data

Cross-site Scripting (XSS)
• OWASP definition:

• Cross-Site Scripting (XSS) attacks are a type of injection, in which
malicious scripts are injected into otherwise benign and trusted
web sites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of a
browser side script, to a different end user.

• Basically, an attacker finds an issue that allows them to
modify a page’s code, then delivers that modified code to
a victim

• 2 types detected by Burp in scanning
• Reflected (malicious script reaches server before returning to user)
• DOM-based (client-side only, performance of the page changes

rather than the page itself)

Walmart XSS
• Burp reported 2 instances of reflected XSS on Walmart

pages
• Inaccurate
• “<“ sanitized to “%lt”

• 2 obscure pages contained 3 possibly accurate instances
of possible DOM-based XSS vulnerabilities
• These pages read the location property from the user

Target XSS
• 245 reported instances of DOM-based XSS

• The pages do use the location property, but it does not write the
data to the page in a way that this cannot be exploited

• Also 1 reported instance of reflected XSS on the store
locator page
• Inaccurate

Jet’s XSS
• 3 instances of DOM-based XSS were reported from one

of the Javascript assets
• Just like Target, the code does uses the location property but in a

safe way

Imo’s XSS
• Imo’s did have an actual instance of reflected XSS

vulnerability
• When searching for a nearby store, it is possible to exit

entering data into the address field and inject script into
the page
• Page sanitizes ‘ or “
• Does not sanitize < or >
• Wasn’t able to create custom alert, but could use variable

• I used this string in the address field to demonstrate
• “ /> <script>alert(location)</script>

Chrome’s Response
• Chrome recognizes this as XSS. Viewing the source code

shows:

Internet Explorer’s Response

Cross-Origin Resource Sharing (CORS)
• Burp definition:

• The HTML5 cross-origin resource sharing policy controls whether
and how content running on other domains can perform two-way
interaction with the domain which publishes the policy. If another
domain is allowed by the policy, then that domain can potentially
attack users of the application.

• Target’s gift registry pages allow for CORS
• These pages allow access to requests from arbitrary

domains
• Probably any page would have access

HTTP Response Header Injection
• Response header injection occurs when pages add user

input into HTTP headers in an unsafe way
• Similar to XSS in that an attacker modifies how the page

responds by adding their own content
• This was detected on one of Walmart’s pages

• The page allowed for a randomly created URL parameter to be
included in the Location header

• Sanitized
• In the remediation report, I moved this from a High-

severity vulnerability to Low

Open Redirection
• OWASP definition:

• An open redirect is an application that takes a parameter and
redirects a user to the parameter value without any validation. This
vulnerability is used in phishing attacks to get users to visit
malicious sites without realizing it.

• Imo’s was vulnerable on one of its shop pages to open
redirection
• On this page, you can enter anything you want as the value for the

ReturnTo parameter, and the user will be sent there
• Could be used in phishing attacks

• In remediation report, bumped this from a Low
vulnerability to Medium

Final Results

Final Results – Imo’s
• Find-a-store feature vulnerable to Reflected XSS
• One shop page vulnerable to Open Redirection
• The page to login to the company’s Wordpress page

submits the password in cleartext
• An attacker monitoring network traffic could easily steal a password

Final Results – Imo’s
• While investigating the cleartext password issue, I found

that besides the ordering pages, Imo’s does not allow for
HTTPS connection

• Imo’s has some serious security issues, but it being the
smallest company and least used website this is to be
expected

Final Results – Jet’s
• Jet’s was very impressive – grand total of 1 Low

vulnerability
• It issued one cookie that didn’t have the HTTP-only flag set

• Setting this flag can prevent scripting attacks from retrieving the
cookie’s value

• Being the second smallest company, I did not expect Jet’s
to have such a secure site

Final Results - Walmart
• Decent security in my opinion

• ASP.NET tracing enabled on one page, without knowing the site’s
infrastructure it’s hard to say how much this exposes

• Possible DOM-based XSS on 3 obscure pages
• Shockingly high numbers of Low (510) and Medium (330)

issues
• Mostly due to flags not being set on HTTP and SSL cookies

• Being one of the largest companies in the world with a
huge amount of online business, Walmart can be
expected to have tight web security

• I would advise Walmart to look into the issues mentioned
above, which are likely very easy to fix

Final Results - Target
• Target had the most High-severity vulnerabilities of any

site
• 15 pages likely vulnerable to SQL injection

• Cross-origin resource sharing on registry pages

• Also 95 Low vulnerabilities due to cookie issues

• Except for the possibility of being exposed to SQL
injection, Target’s site is fairly secure
• Hard to say without trying to extract data if SQL really is an issue

Challenges and Final Thoughts
• Researching each vulnerability enough to understand

what it was, how it was manipulated by Burp, and how to
manipulate it myself was very time-consuming
• Researching syntax for SQL, XPATH, LDAP, HTML entities, URL

encoding
• Many hours spent examining HTTP requests and responses,

especially headers and parameters

• Also difficult to find ways to test some of the vulnerabilities
ethically
• SQL frustration

• Worked to understand what were at times some pretty
huge and complex HTML files

Challenges and Final Thoughts
• Thoughts on Burp:

• Hyper-sensitive
• Needs manual confirmation

QUESTIONS?

