



Patricia Rush Senior Seminar Project

### Chaos

- Chaos is apparently unpredictable behavior arising in a deterministic system because of great sensitivity to initial conditions.
- The idea that seemingly chaotic and disconnected systems actually do have order.

### Quote

"Can the flap of a butterfly's wing stir up a tornado in Texas?"

-Edward Lorenz

### Role of the mathematician

- This idea intrigued scientists and mathematicians.
- If they could find some pattern, then maybe they could predict things such as weather.

## What is in common?













http://home.wtal.de/spiriteye/fractal/





# What in the world is a Fractal?



Named by Mandelbrot in 1975, from Latin fractus meaning "to break".

- A fractal is a geometrical figure in which an identical motif repeats itself on an ever diminishing scale.
- A fractal is an image that repeats itself over and over again within itself.



# What do fractals have to do with chaos?

Fractals have some of the same chaotic characteristics.

#### Fractals are:

- Sensitive to small changes
- Unpredictable
- Appear chaotic, even though they were created using non-chaotic equations.

# Key Ideas

- Recursion
- Iterations
- Self-Similarity
- Fractional Dimension

# Why in Mathematics?

Mathematical equations can be assigned to explain the recurring nature of the fractals.

# Fractals made simple

#### Key concepts:

- Functions
- Graphing
- Complex numbers

### Background Information

- Fractals use complex numbers instead of the familiar (x,y) coordinates.
- Use x+iy instead
  - X = real
  - Y = imaginary
- Use a different coordinate plane
  - X-axis = real numbers
  - Y- axis = imaginary numbers

### The Mandelbrot



Internet site: http://library.thinkquest.org/3703/pages/chaos/html.

# The Julia Set



# Using Computers to Generate

Using the equation:  $z_n^2 = z_{n-1}^2 + c$ 

- Pick a point: 2+1i
- Pick a constant: c=0
- Substitute in the equation:

$$z_n = z_{2+i} = (2+i)(2+i)+0=$$
  
4+2i+2i+i<sup>2</sup>

$$=3+4i$$

#### Recursion

Now that we have a new value we will execute the function with this value. This idea is called <u>recursion</u>. This can also be called iterating the problem. The more iterations, the more complex.

Remember to keep the constant the same for each different Julia Set.

### Recursion in Action

With the same formula as before:

$$z_n^2 = z_{n-1}^2 + c$$

- Substitute our new value of 3+4i
  - $z_n^2 = (3+4i)^2 + 0$
  - = (3+4i)(3+4i)+0
  - $= 9+12i+12i+16i^2$
  - = -7+24i

## Julia Set for c=0



Courtesy of Geometer's Sketchpad

# Key terms in the complex plane

- <u>Escape Set</u> points for which the iteration produces values that are unbounded.
- Prisoner Set points for which the iteration produces values that are bounded.
- Boundary points for which every neighborhood contains points from both the escape and prisoner sets.



### What's next?

- All the points created with a constant form a Julia Set.
- The Julia Sets that are connected are in the Mandelbrot set, those disconnected are not.

#### Definitions

A set is called <u>connected</u> provided it cannot be decomposed into two disjoint, non-empty sets.

A set is called <u>disconnected</u> if it can be decomposed into disjoint parts.

# Examples

Connected

Disconnected





### Now what?



- The areas that are dark blue are the corresponding connected Julia sets.
- All other areas are the corresponding disconnected Julia Sets.

# Are the Colors significant?

#### YES!

The colors tell whether the point is in the set or not.

The different colors are symbolic of the different number of iterations.

## The Koch Curve



### The Koch Curve



# Sierpinski's Triangle



### Fractals in the "Real World"

- Human Body
- Nature
- Food
- Landscapes
- Coastlines
- Stock Market
- Weather
- Etc.

# The Human Body



- Neurons
- Cells
- Pathogens
- Brain
- Blood vessels

# Capillaries



### Ferns and other Plants



### Trees



- Branches
- Leaves

# Cauliflower



# Lightning



# Fractal-generated clouds



# Mountain Range



Internet site: http://www.kcsd.k12.pa.us/~projects/fractal/pics.html

# Landscape wrapped around a sphere (computer generated)



# Snowflakes



### Conclusion

- Fractals are all around us.
- Mathematicians have developed and are continuing to develop equations to generate these fractals.
- Maybe the stock market and weather will be even more predictable in the future.