Applications of Linear Algebra and Statistics in Point-based Medical Image Registration

Brian A. Taylor

Department of Mathematics &

Computer Science

Medical Image Registration

Process of aligning images so
 corresponding features can be seen together

 Used for clinical and research purposes

Mathematical Background

 Linear transformations are used to transform one image into another.

 Statistical methods are used to determine the accuracy of the registration.

Linear Transformations

A mapping T of Rⁿ into R^m, written as

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

is a rule that assigns to each vector **u** in **R**ⁿ an unique vector **v** in **R**^m

Must be operation preserving

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
$$T(\mathbf{c}\mathbf{u}) = cT(\mathbf{u})$$

Linear Transformations

2D Rotation

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• Rotate point (x,y) counterclockwise at angle θ

Linear Transformations

Translation in the xy plane

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

Where $a, b \in \mathbb{R}$

Least Squares Method

• Given data points x_i and y_i , there are numbers a and b where

$$\sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

will give a minimum value.

Least Squares Method

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - y)$$

Least Squares Method

$$b = \frac{S_{xy}}{S_{xx}} \qquad a = \overline{y} - b\overline{x}$$

Error Sum of Squares

$$\sum_{i=1}^{n} (y_i - a - bx_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

Orthogonal Procustes Problem

- Least Squares Method to fit one data set to another
- Solved by Schönemann in 1966
- Procustes in Greek Mythology

Point-Based Registration

Coordinates for the fiducials can be found on multiple images

One set of fiducials can be lined up with another.

Fiducials

Point-Based Registration

 Each point is represented as a vector in a column of a matrix.

• The method of least squares (in matrix form) can be used to find the rotation and translation needed to register the image.

Point-Based Registration

Given: Two 3D point sets $\{x_i\}$ and $\{y_i\}$, we wish to find the optimal rotation \mathbf{R} and translation \mathbf{T} where

$$y_i = \mathbf{R}x_i + \mathbf{T}$$

Registration Algorithm

First, find the centroid of each point set (x and y will be a column matrix)

$$y = \frac{1}{N} \sum_{i=1}^{N} y_i$$

$$x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Registration Algorithm

Next, sum the difference between the points and the centroid

$$q_i = x_i - x$$
$$q_i' = y_i - y$$

Minimize
$$\sigma^2 = \sum_{i=1}^{N} ||y_i - (\mathbf{R}x_i + \mathbf{T})||^2 = \frac{1}{N} \sum_{i=1}^{N} ||q_i' - \mathbf{R}q_i||^2$$

How do we minimize σ^2 ?

Answer: Find the singular value decomposition of

$$H = \sum_{i=1}^{N} q_i q_i^{\prime T}$$

Singular Value Decomposition (SVD)

The matrix H can be "decomposed" to

$$H = UDV^T$$

where U and V are orthonormal and D is a 3x3 diagonal matrix

$$H = UDV^T$$

$$H = UV^T$$

$$R = VU^T$$

Rotation Transformation

R will be the rotation matrix needed to register the image

$$R = VU^T$$

Note: The determinant of R must be 1. If the determinant is -1, then R contains a reflection which is not wanted.

Translation

The translation can be found simply by

$$T = y - Rx$$

Registration Errors

- Fiducial Registration Error (FRE)
- Fiducial Localization Error (FLE)

Target Registration Error (TRE)

Fiducial Registration Error (FRE)

$$\sigma^2 = \sum_{i=1}^N \left\| y_i - (\mathbf{R}x_i + \mathbf{T}) \right\|^2$$

Also called the root mean squared distance

Not always an accurate measurement on the efficiency of the registration!

Fiducial Localization Error (FLE)

- Where exactly are the fiducials?
 - There can be a degree of uncertainty of where the fiducial is located.

Are the coordinates taken from the center of the fiducial or on a random location in the fiducial?

Target Registration Error (TRE)

 Determines how well areas of interest other than the fiducials are lined up.

In 3D, the TRE can be predicted using

$$TRE^{2}(r) \approx \frac{FLE^{2}}{N} (1 + \frac{1}{3} \sum_{k=1}^{3} \frac{d_{k}^{2}}{f_{k}^{2}})$$

Target Registration Error

If the fiducials are on the edges (bone/skin implants) we must make sure the target is also aligned.

Target

Registration of a Spinal Vertebra Using Mathematica 5.0

Finding the Fiducials

References

- Arun, K.S., T.S. Huang, and S.D. Blostein. "Least-Squares Fitting of Two 3-D Point Sets." <u>IEEE</u>
 <u>Transactions on Pattern Analysis and Machine Intelligence</u> PAMI-9 (1987): 698-700.
- Fitzpatrick, J. Michael, Jay B. West, and Calvin R. Maurer, Jr. "Predicting Error in Rigid-body, Point-based Registration." IEEE Transactions on Medical Imaging 17 (1998): 694-702.
- Hajnal, Joseph V., Derek L.G. Hill, and David J. Hawkes. <u>Medical Image Registration.</u> New York: CRC Press LLC, 2001.
- Johnson, Richard A. Miller and Freund's Probability and Statistics for Engineers. 6th ed. Upper Saddle River, New Jersey: Prentice Hall, 2000.
- Szidarovszky, Ferenc and Sándor Molnár. <u>Introduction to Matrix Theory with Applications to Business and Economics.</u> River Edge, New Jersey: World Scientific, 2002.
- Williams, Gareth. <u>Linear Algebra with Applications.</u> 4th ed. Boston: Jones and Bartlett Publishers, 2001.

Acknowledgements

- Troy Riggs, Ph.D.
- Jeannette Russ, Ph.D.
- Matt Lunsford, Ph.D.
- Department of Engineering
- Department of Mathematics and Computer Science