Bridging the Group Definition Gap

Matthew Dawson

Evariste Galois (1811-1832)

- Political revolutionary
- Died in a duel under mysterious circumstances
- May have sacrificed his life (Rigatteli)
- Very sad, short life

Evariste Galois (1811-1832)

- Discovered criterion for polynomial equations to be solvable by radicals
- Founded group theory
- Defined groups differently from modern texts
- Thought of groups as sets of arrangements

A Project is Born

- Most students never get exposed to Galois's original definition
- Group theory can be seen from interesting perspective
- Dr. Lunsford

A Project is Born

- Demonstrate connection of Galois's arrangement sets to modern groups
- Determine what is meant by solvability in the context of Galois's arrangement sets
- Provide correct and rigorous mathematical proofs
- Provide concrete example of showing that an arrangement set is solvable

Arrangements: The "New" Concept

Definition 1 Given a nonempty finite set S with n elements, an **arrange-ment of S** is an n-tuple $(a_1, a_2, \ldots, a_n) \in S^n$ where for every element $s \in S$ there exists exactly one $i \in \{k \in \mathbb{N} \mid 1 \le k \le n\}$ such that $a_i = s$.

We shall use the notation $[a_1 \ a_2 \ a_3 \ \dots \ a_n]$ to denote that an n-tuple $(a_1, a_2, a_3, \dots, a_n)$ is an arrangement of a set with n elements.

In addition, the set of all arrangements of a set S is denoted by Arr(S) and the set of all permutations on S is denoted by Sym(S).

Arrangements: The "New" Concept

Definition 1 Given a nonempty finite set S with n elements, an **arrange-ment of S** is an n-tuple $(a_1, a_2, \ldots, a_n) \in S^n$ where for every element $s \in S$ there exists exactly one $i \in \{k \in \mathbb{N} \mid 1 \le k \le n\}$ such that $a_i = s$.

We shall use the notation $[a_1 \ a_2 \ a_3 \ \dots \ a_n]$ to denote that an n-tuple $(a_1, a_2, a_3, \dots, a_n)$ is an arrangement of a set with n elements.

In addition, the set of all arrangements of a set S is denoted by Arr(S) and the set of all permutations on S is denoted by Sym(S).

Example:

- Let S = {a, b, c}
- (a, b, b) is not an arrangement of S
- (a, c, b) is an arrangement of S

Arrangements: The "New" Concept

lacktriangle Shorthand: write abc instead of

$$(a,b,c)$$
 or $\begin{bmatrix} a & b & c \end{bmatrix}$

Arrangements and permutations on S:

$$Arr(S)$$
 $Sym(S)$
 abc (ab)
 bac (ac)
 bca (ac)
 cab (acb)
 cba (acb)
 $(ab)(ab)$

Sym(S) is a group in the modern sense

How to Apply a Permutation to an Arrangement

Theorem 1 Let S be a finite set with n elements.

1. Let $f \in Sym(S)$, and consider the mapping P_f on Arr(S) such that for each arrangment $\alpha = [a_1 \ a_2 \ a_3 \ \dots \ a_n] \in Arr(S)$,

$$P_f(\alpha) = (f(a_1), f(a_2), f(a_3), \dots, f(a_n)).$$

Then P_f is a well-defined permutation on Arr(S).

- 2. For all $\alpha, \beta \in Arr(S)$, there exists a unique permutation $f \in Sym(S)$ such that $P_f(\alpha) = \beta$.
- 3. For all $f, g \in P$, $P_f \circ P_g = P_{f \circ g}$.

How to Apply a Permutation to an Arrangement

■ Example: f = (ab)

$$P_f(abc) = f(a)f(b)f(c) = bac$$

$$P_f(acb) = f(a)f(c)f(b) = bca$$

$$P_f(bac) = f(b)f(a)f(c) = abc$$

$$P_f(bca) = f(b)f(c)f(a) = acb$$

$$P_f(cab) = f(c)f(a)f(b) = cba$$

$$P_f(cba) = f(c)f(b)f(a) = cab$$

 $lue{}$ Notation P_f won't be used again

How to Apply a Permutation to an Arrangement

Theorem 1 Let S be a finite set with n elements.

1. Let $f \in Sym(S)$, and consider the mapping P_f on Arr(S) such that for each arrangment $\alpha = [a_1 \ a_2 \ a_3 \ \dots \ a_n] \in Arr(S)$,

$$P_f(\alpha) = (f(a_1), f(a_2), f(a_3), \dots, f(a_n)).$$

Then P_f is a well-defined permutation on Arr(S).

- 2. For all $\alpha, \beta \in Arr(S)$, there exists a unique permutation $f \in Sym(S)$ such that $P_f(\alpha) = \beta$.
- 3. For all $f, g \in P$, $P_f \circ P_g = P_{f \circ g}$.

Where Are we Going?

- Question: What do arrangements have to do with groups?
- Answer: Permutations
- Next step: associate two kinds of permutation sets with arrangement sets
- Determine when these permutation sets form groups

Permutation Sets of the First Kind

Definition 2 Let S be a nonempty finite set, let $C \subseteq Arr(S)$, and let $\alpha \in C$. Then the **permutation set of** α **in** C, denoted $\bowtie_{\alpha} (C)$, is the set

$$\bowtie_{\alpha} (C) = \{ f \in Sym(S) \mid f(\alpha) \in C \}$$

Example:

$$C = \{abc, bca, cab, cba\} \qquad \alpha = abc$$

$$abc \xrightarrow{(ab)(ab)} abc$$

$$abc \xrightarrow{(abc)} bca$$

$$abc \xrightarrow{(acb)} cab$$

$$abc \xrightarrow{(ac)} cba$$

$$\bowtie_{\alpha} (C) = \{(ab)(ab), (abc), (acb), (ac)\}$$

Total Permutation Sets

Definition 3 Let S be a nonempty finite set, and let $C \subseteq Arr(S)$. Then the **permutation set associated with** C, denoted \bowtie (C), is the set

$$\bowtie (C) = \{ f \in Sym(S) \mid \exists \alpha \in C \text{ such that } f(\alpha) \in C \}.$$

Example:

$$C = \{abc, bca, cab, cba\}$$

$$\bowtie (C) = \{(ab)(ab), (abc), (acb), (ab), (ac), (bc)\}\$$

The Permutation Sets are Different

In our previous example,

$$\bowtie (C) = \{(ab)(ab), (abc), (acb), (ab), (ac), (bc)\}\$$

 $\bowtie_{\alpha} (C) = \{(ab)(ab), (abc), (acb), (acb), (ac)\}\$

- □ Thus, $\bowtie_{\alpha} (C) \neq \bowtie (C)$
- \square In general, $\bowtie_{\alpha} (C) \subseteq \bowtie (C)$
- When are the sets equal?
- Stay tuned!

A Lemma Along the Way

Lemma 2 If C is a set of arrangements of a finite set such that $\bowtie_{\alpha} (C)$ forms a group under composition, where $\alpha \in C$, then $\bowtie_{\alpha} (C) = \bowtie (C)$.

Examples:

$$M = \{abc, acb\}$$

$$abc \xrightarrow{(ab)(ab)} abc \qquad acb \xrightarrow{(ab)(ab)} acb$$

$$abc \xrightarrow{(bc)} acb \qquad acb \xrightarrow{(bc)} abc$$

$$\bowtie_{abc} (M) = \bowtie_{acb} (M) = \bowtie(M) = \{(ab)(ab), (bc)\}$$

■Note that $\bowtie_{acb} (M)$ is a group

A Lemma Along the Way

Lemma 2 If C is a set of arrangements of a finite set such that $\bowtie_{\alpha} (C)$ forms a group under composition, where $\alpha \in C$, then $\bowtie_{\alpha} (C) = \bowtie (C)$.

□In other example, we did not get a group:

$$\bowtie_{\alpha} (C) = \{(ab)(ab), (abc), (acb), (ac)\}$$

□Thus, $\bowtie_{\alpha}(C) \neq \bowtie(C)$

Galois Makes an Entrance

Definition 4 A set C of arrangements of a nonempty finite set S is a **Ga-lois Set of Arrangements (GSA)** if for all $f \in \bowtie (C)$, $\alpha \in C \Rightarrow f(\alpha) \in C$.

Example:

$$C = \{abc, bca, cab, cba\}$$
$$\bowtie (C) = \{(ab)(ab), (abc), (acb), (ab), (ac), (bc)\}$$

- \square Consider $f = (ab) \in \bowtie (C)$
- $exttt{ exttt{ extt{ exttt{ extt{ exttt{ extt{ exttt{ ex$

Galois Makes an Entrance

Definition 4 A set C of arrangements of a nonempty finite set S is a **Ga-lois Set of Arrangements (GSA)** if for all $f \in \bowtie (C)$, $\alpha \in C \Rightarrow f(\alpha) \in C$.

Example:

$$M = \{abc, acb\}$$

$$abc \xrightarrow{(ab)(ab)} abc \qquad acb \xrightarrow{(ab)(ab)} acb$$
 $abc \xrightarrow{(bc)} acb \qquad acb \xrightarrow{(bc)} abc$

$$\bowtie_{abc} (M) = \bowtie_{acb} (M) = \bowtie (M) = \{(ab)(ab), (bc)\}$$

■M is a GSA

The Big Theorem: GSAs and Groups

Theorem 3 Let S be a nonempty finite set. Then for any set of arrangements $C \subseteq Arr(S)$, the following are equivalent

- 1. C is a Galois set of Arrangements.
- 2. For all $\alpha \in C$, $\bowtie_{\alpha} (C)$ forms a group under composition.
- 3. There exists $\alpha \in C$ such that $\bowtie_{\alpha} (C)$ forms a group under composition.

The Big Theorem: GSAs and Groups

Theorem 3 Let S be a nonempty finite set. Then for any set of arrangements $C \subseteq Arr(S)$, the following are equivalent

- 1. C is a Galois set of Arrangements.
- 2. For all $\alpha \in C$, $\bowtie_{\alpha} (C)$ forms a group under composition.
- 3. There exists $\alpha \in C$ such that $\bowtie_{\alpha} (C)$ forms a group under composition.

Let's prove (part of) it!

The Big Theorem: Proof

Proof We shall first show that $(1) \to (2)$. Suppose that C is a Galois set of arrangements. Then for all $f \in \bowtie (C)$, $f(\beta) \in C$ for all $\beta \in C$. Now let $\alpha \in C$. We wish to show that $\bowtie_{\alpha}(C)$ forms a group with respect to function composition.

Let $f, g \in \bowtie_{\alpha} (C)$. Thus $g(\alpha) \in C$. Also, C is a GSA, so that $f(\beta) \in C$ for all $\beta \in C$. It follows that $(fg)(\alpha) = f(g(\alpha)) \in C$. Therefore, by the definition of the permutation set of α in C, $fg \in \bowtie_{\alpha} (C)$. Hence $\bowtie_{\alpha} (C)$ is closed under composition.

Now consider the identity permutation $e: S \to S$. Then $e(\alpha) = \alpha$. Thus, $e \in \bowtie_{\alpha} (C)$, so that $\bowtie_{\alpha} (C)$ contains an identity element.

Next let $f \in \bowtie_{\alpha}(C)$. Then by the definition of the permutation set of α in C, $f(\alpha) = \gamma$ for some $\gamma \in C$. Now $f^{-1}(\gamma) = \alpha$ (recall that f is a permutation, so that f^{-1} exists), so that $f^{-1} \in \bowtie(C)$. Thus, since C is a GSA, $f^{-1}(\beta) \in C$ for all $\beta \in C$. Hence, $f^{-1}(\alpha) \in C$. Therefore, $f^{-1} \in \bowtie_{\alpha}(C)$. Thus $\bowtie_{\alpha}(C)$ contains an inverse for each element. Therefore, $\bowtie_{\alpha}(C)$ forms a group with respect to function composition.

Where Are we Going?

- We know how groups relate to arrangement sets
- Next question: how does normality relate to arrangements?
- Answer: partitions
- First, we must know two ways to create GSAs

Permutation Groups Applied To Arrangement

- Applying a group of permutations to an arrangement produces a GSA
- Example

$$H = \{(ab)(ab), (abc), (acb)\} \qquad \alpha = abc$$

$$abc \xrightarrow{(ab)(ab)} abc$$

$$abc \xrightarrow{(abc)} bca$$

$$abc \xrightarrow{(acb)} cab$$

$$H(\alpha) = \{abc, bca, cab\}$$

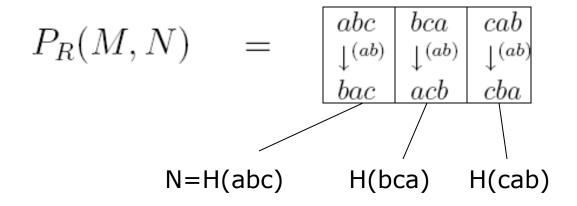
Right Partitions

Example:

$$M = \{abc, bca, acb, bac, cba, cab\} \quad N = \{abc, bac\}$$

$$H = \bowtie (N) = \{(ab)(ab), (ab)\}\$$

■We can form a right partition of M using N



A Permutation Applied to a GSA

- Applying a permutation to all elements of a GSA yields a new GSA
- Example

$$N = \{abc, bca, cab\} \qquad g = (ab)$$

$$abc \xrightarrow{(ab)} bac$$

$$bca \xrightarrow{(ab)} acb$$

$$cab \xrightarrow{(ab)} cba$$

$$g(N) = \{bac, acb, cba\}$$

Right Partitions

Example:

$$M = \{abc, bca, acb, bac, cba, cab\} \quad N = \{abc, bac\}$$

$$H = \bowtie (N) = \{(ab)(ab), (ab)\}$$

■We can form a *left partition* of M using N

$$P_L(M,N) = \begin{bmatrix} abc & \stackrel{(abc)}{\rightarrow} & bca & \stackrel{(ab)}{\rightarrow} & acb \\ bac & \stackrel{(abc)}{\rightarrow} & cba & \stackrel{(ab)}{\rightarrow} & cab \end{bmatrix}$$

Two Important Partitions

■Summary:

$$M = \{abc, bca, acb, bac, cba, cab\} \quad N = \{abc, bac\}$$

$$P_R(M, N) = \begin{vmatrix} abc & bca & cab \\ bac & acb & cba \end{vmatrix}$$

$$P_L(M, N) = \begin{vmatrix} abc & bca & acb \\ bac & cba & cab \end{vmatrix}$$

In this case, the left and right partitions are not equal Question: will they ever be equal?

Normality

Theorem 12 Let M and N be GSAs of a finite set S, $N \subseteq M$, and let $G = \bowtie(M)$ and $H = \bowtie(N)$. Then $H \triangleleft G$ iff. $P_L(M,N) = P_R(M,N)$.

- lacksquare If $H \triangleleft G$ then we say that N is a normal subset of M
- In previous example, N was not a normal subset of M
- Very important group property; implies the existence of quotient group
- Next task: When is a quotient group cyclic?

Cyclic Quotient Groups

Theorem 13 Let M and N be GSAs of a finite set S, $N \subseteq M$, let $G = \bowtie (M)$ and $H = \bowtie (N)$, such that $H \triangleleft G$, and let $\alpha \in N$. Then $\frac{G}{H}$ is cyclic iff. there exists a permutation $f \in G$ such that for each $T \in P_L(M, N) = P_R(M, N)$, there exists $n \in \mathbb{N}$ such that $T = (f^n H)(\alpha) = f^n(N)$

 $lue{}$ A group H_0 is solvable when a normal chain exists:

$$H_n = \{e\} \triangleleft H_{n-1} \triangleleft \cdots \triangleleft H_2 \triangleleft H_1 \triangleleft H_0$$
 where $\frac{H_i}{H_{i-1}}$ is cyclic

We say that a GSA is solvable when its associated permutation set is solvable

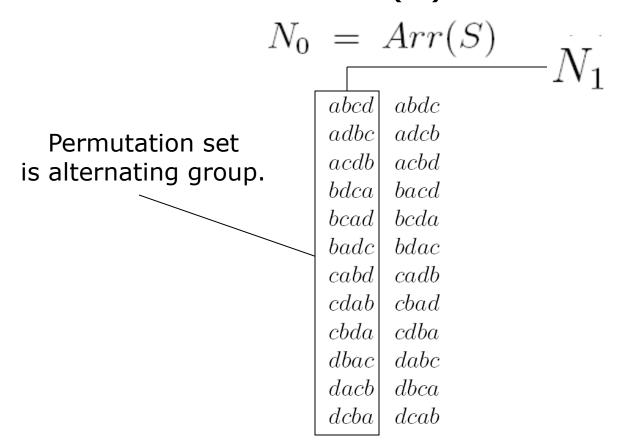
- Our final task is to show that quartic (degree four) polynomials are solvable by radicals
- Example was used by Galois in his memoir
- Notation a little different
- We must show that the set of all arrangements of a set with four elements forms is solvable

- □ Let $S = \{a, b, c, d\}$
- Task: Show that Arr(S) is solvable

$$N_0 = Arr(S)$$

abcd cabd
abdc cadb
acbd cbda
acdb cbad
adbc cdab
adcb cdba
bacd dabc
badc dacb
bcad dbca
bcda dbac
bdac dcab

- □ Let $S = \{a, b, c, d\}$
- □ Task: Show that Arr(S) is solvable



- Let S = {a, b, c, d}
- Task: Show that Arr(S) is solvable

$$N_0 = Arr(S)$$

Must be a normal subset; there is only one partition.

Quotient group formed by permutation sets must be cyclic; it contains only two elements

 $N_0 = Arr(S)$
 $abcd$
 $adbc$
 $adbb$
 $acbd$
 $bdca$
 $bdca$
 $badc$
 $bdac$
 $cabd$
 $cdab$
 $cdab$

dcab

dcba

Quotient group formed by

two elements

■ Problem reduces to:

Is the set
$$N_1=egin{bmatrix} abcd & acdb & adbc \ badc & bdca & bcad \end{bmatrix}$$
 solvable? $N_2=egin{bmatrix} abcd & acdb & adbc \ bdca & bcad & cbda \ dcba & dbac & dacb \end{bmatrix}$

Because $\bowtie_{abcd} (N_2)$ forms a group (Klein four group), N_2 is a GSA.

Left partition of N_1 by N_2

Right partition of N_1 by N_2

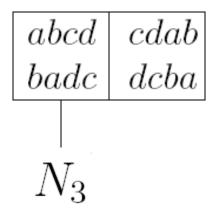
abcd	acdb	adbc
badc	bdca	bcad
cdab	cabd	cbda
dcba	dbac	dacb

- $\hfill\Box$ The left and right partitions of N_1 by N_2 are the same, so that N_2 is a normal subset of N_1
- One permutation (i.e., (bcd)) connects
 arrangement sets in partition; quotient group is cyclic

■ Problem reduces to:

Is the set
$$N_2 \stackrel{-}{=} rac{abcd}{badc}$$
 solvable? $rac{cdab}{dcba}$

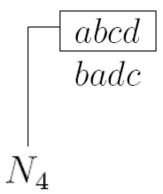
The set can be partitioned into two GSAs:



Problem reduces to:

Is the set
$$N_3=rac{abcd}{badc}$$
 solvable?

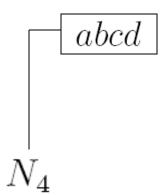
The set can be partitioned into two GSAs:



Problem reduces to:

Is the set $N_4 = abcd$ solvable?

 $lue{}$ The associated permutation set of N_4 consists of identity permutation.



We have just created a normal chain of GSAs:

$$N_4 \subseteq N_3 \subseteq N_2 \subseteq N_1 \subseteq N_0$$
$$H_4 = \{e\} \triangleleft H_3 \triangleleft H_2 \triangleleft H_1 \triangleleft H_0$$

- Quotient groups are cyclic
- Yippee!
- lacksquare N_0 (i.e., Arr(S)) is solvable!
- Fourth degree polynomials can be solved by radicals.

Parting Thoughts

- Inculcated in my mind the centrality of permutations
- Proving the theorems was fun
- Perhaps algebra students should be exposed to arrangements
- Much work can still be done
- Hunch:

Theorem 14 Let M and N be GSAs of a finite set S, $N \subseteq M$, and let $G = \bowtie(M)$ and $H = \bowtie(N)$, such that $H \triangleleft G$. Then for all $f \in G$, $\frac{G}{H} \sim \langle f \rangle$ iff. $\langle f \rangle(\alpha)$ contains exactly one arangement from each arrangement set in $P_L(M,N) = P_R(M,N)$.

Acknowledgements

- Dr. Lunsford
 - Made original suggestion
 - Always helpful
- Undergraduate research program
 - The grant money was nice
 - An excuse to keep working into spring

References

- Rigatelli, Laura Toti. <u>Evariste Galois</u>. Basel, Switzerland: Birkhauser, 1996.
- □ Tignol, Jean-Pierre. <u>Galois' Theory of</u> <u>Algebraic Equations</u>.
 - New Jersey: World Scientific, 2001.
- Edwards, Harold M. <u>Galois Theory</u>. New York: Springer-Verlag, 1984.

May your arrangements always be normal!