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Introduction

1. Brief overview of the basics of dif-
ference equations

2.  Study  of  a  general  epidemic
model  that  utilizes generating func-
tions

3.  Research  and  findings  of  Union
University influenza data using a dif-
ference equation model
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What  is  a  Difference
Equation?

At  its  basics,  a  difference equation
is a relation between consecutive ele-
ments  of  a  sequence.   Difference
equations enable the mathematician
to use a given set of values in order
to determine the value of a function.
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An example would be in finding the value of an investment:

Let y(t) be the value of an investment after t quarters of a year.  Our original investment will be $24, so y(0) = 24.  If our interest rate

is 1.75% per quarter, then y(t) satisfies the difference equation

y(t + 1) = y(t) + .0175y(t)

          = y(t)[1 + .0175]

      = (1.0175)y(t)

for t = 0, 1, 2, … .  Computing y recursively, we have

y(1) = 24 (1.0175)

y(2) = 24 (1.0175)²,

.

.

.

y(t) = 24 H1.0175Lt .
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Difference Operator

Let y(t) be a function of a real or com-
plex variable t.  The "difference oper-
ator" D is defined by 

Dy(t)  = y(t+1) - y(t).
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There  are  several  rules,  theorems,
and  properties  that  go  along  with
the difference operator.

For instance:

-the  higher  order  difference  rule
(similar to a 2nd derivative in differen-
tial calculus), 

-the  factorial  function  (a  version  of
the power rule for solving finite differ-
ences)
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To show how simple and accessible
a  proof  in  difference  calculus  can
be, an example is given for the theo-
rem

Theorem: Dat  =  (a  -
1)at.

Proof:   Dat = at+1 - at

                           = at(a1- 1).
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Summation

An “indefinite sum” of  y(t),  denotedÚyHtL is any function so that

D(ÚyHtL) = y(t)

for all t in the domain of y.
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Generating Function

Let {yk} be a sequence of constants.
Suppose there is a function g(x) so
that

g(x) = Úk=0
¥ ykxk

for all x in an open interval about 0.
Then g is called the “generating func-
tion” for {yk}
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Finding a Generating Func-
tion

Let  yk  =  Ck,  for  some constant  C.
To compute the generating function
for 8yk<, the series must be summed,

Úk==
¥ Ck xk = Úk=0

¥ HCxLk

This can be recognized as a geomet-
ric  series  and  the  generating  func-
tion is found.

1
1-Cx

= g(x)

for   Cx¤ � 1.
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Epidemiology
Model
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The epidemic model investigated below is presented in Kelley and Peterson, pages 87 and 88 and Lauwerier, page 162.

xn = the fraction of susceptible individuals in a certain population during the nth day of an epidemic

Ak= a measure of how infectious the ill individuals are during the k th day

Ε = a small positive constant representing the carriers (those who can not get the disease but are able to spread it to others).

log 
1

xn+1

= Úk=0
n H1 + Ε - xn-k LAk , (n³0)

With substitutions and the utilization of exponent rules and properties of the natural log, this equation can be rewritten:

yn+1= Úk=0
n HΕ + yn-k )Ak .

where yn is the fraction of people that have the disease.
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The method of generating functions can be applied here because of the form of the sum Úk=0
n yn-k Ak , which is called a sum of

"convolution type."  

Now, a generating function Y(t) must be derived for {yn<,

Y(t) = Ún=0
¥ yn tn,

and set

A(t) = Ún=0
¥ An tn+1.

By multiplying the two power series and factoring, the product is

A(t)Y(t) = Ún=0
¥ IÚk=0

n yn-k Ak Mtn+1.
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Returning to the equation yn+1= Úk=0
n HΕ + yn-k )Ak  and distributing Ak  as well as multiplying both sides of this difference equation by

tn+1 and summing results in

Ún=0
¥  yn+1tn+1 = ΕÚn=0

¥ IÚk=0
n Ak Mtn+1 + Ún=0

¥ (Úk=0
n Ak yn-k )tn+1.

By simplification, substitution, and factoring, a generating function for {yn< is derived:

Y(t) = 
Ε AItM

I1 - tM I1-AItMM .
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In a few special cases, the sequence {yn< can be computed explicitly.  The specific model that will be used with the Union University

data is presented on pages 88 and 89 of the Kelley and Peterson text.

 

Conditions:

Ak= cΑk , 0� Α� 1.  

c is a constant that represents the infectiousness on day 0

Α is the rate at which the infectiousness declines daily. 

Set A(t) = 
ct

1 - Αt
 and Y(t) = 

Εct

I1 - tM I1 - Αt - ctM .

By partial fractions, simple algebra, and recognition of geometric series, the equation for Y(t) can be rewritten,

Y(t) = J Εc

1 - HΑ + cL N [Ún=0
¥ tn - Ún=0

¥ HΑ + cLntn].

So, for a single value of yn, it is written

yn = J Εc

1 - HΑ + cL N[1 - HΑ + cLn].

¢ | £

16 seminarpresentationfinal.nb



Union  University
and Influenza
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uuprebreak := 810, 18, 25, 34, 40, 50, 59, 68,

83, 98, 109, 121, 132, 137, 148, 153, 158, 162,

174, 178, 181, 184, 190, 195, 201, 203, 211, 221,

243, 264, 280, 285, 302, 304, 311, 318, 321, 326<

ListPlot@Table@uuprebreak, 8n, 0, 40<DD
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Graph the generating function with particular values of Ε , Α,  and c.

Ε := .0088

Α := .53

c := .453

ListPlot@
8Table@2857 * HΕ * cL � H1 - HΑ + cLL H1 - HΑ + cL^nL,

8n, 0, 50<D, uuprebreak<D
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Expanding the domain shows when the graph will level off.

ListPlot@8Table@2857* HΕ *cL � H1 - HΑ + cLL H1 - HΑ + cL^nL, 8n, 0, 396<D,
uuprebreak<D
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Now, look at the post-fall break data and compare.

uupostbreak := 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 328, 329, 333, 334, 337, 339, 341, 341,

343, 343, 343, 345, 345, 347, 347, 349, 352, 353<

ListPlot@
8Table@2857 * HΕ * cL � H1 - HΑ + cLL H1 - HΑ + cL^nL,

8n, 0, 50<D, uuprebreak, uupostbreak<D
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Possible                Conclusions                       to
Research:

Natural trend

Extended break

Need more data
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