Incomplete Data

Incomplete Data

- •Incomplete Data in insurance is a common problem and prevalent in basically all data sets.
- •Can be incomplete from missing data or lack of filed claims

Types of Incomplete Data

- Data can be incomplete from many different reasons.
 From simply missing data, censored data or truncated data.
 - Incomplete data from missing data is caused by data sets simply missing values.
 - Incomplete data is considered censored when the number of values in a set are known, but the values themselves are unknown.
 - Incomplete data is said to be truncated when there are values in a set that are excluded.

Truncation

- Two main types of truncation
 - Data is said to be truncated from below when the set of missing data is all the values below a specific value in the set.
 - Data is said to be truncated from above when the set of missing data is all the values above a specific value in the set.

Insurance Truncation

- Insurance data sets are often truncated due to multiple reasons
 - Deductibles
 - Total loss limits

Models for Incomplete Data

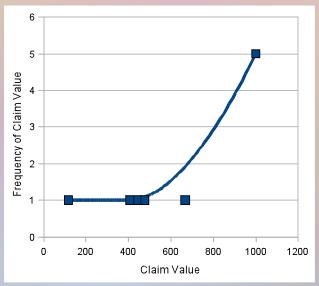
- Many different models are used to estimate distributions containing incomplete data. A few are:
 - Shifted Models
 - Maximum Likelihood Estimations
 - The Expectation Maximization Algorithm

Shifted Models

- Simply shift the data set to estimate the missing values
 - This is a very inaccurate way to estimate incomplete data
 - Only takes into account current data and does not look at what values the missing data could actually be

Shifted Models

- Using data set: {117, 407, 446, 476, 667, 1,000, 1,000, 1,000, 1,000, 1,000} as our set of claims
- Shifted data set could be: {17, 307, 346, 376, 567, 900, 900, 900, 900, 900}



MLE

- To look at the next two models we have to consider maximum likelihoods
- MLE is the Maximum Likelihood Estimate

MLE

Let $X = \{X_1, ..., X_n\}$ be a random vector and $\{f_X(x|\theta): \theta \in \Theta\}$

this model is parameterized by $\theta = \{\theta_1, \dots, \theta_n\}$, which is the parameter vector in the parameter space Θ .

So the Likelihood Function is a map L: Θ —>R given by $L(\theta|x)=f_x(x|\theta)$

MLE

The parameter vector θ such that

 $L(\theta) \ge L(\theta)$ for all $\theta \in \Theta$

is called a Maximum Likelihood of θ

 Now using this Maximum Likelihood Estimate we can gain a model of our data from the previous example

MLE Example

- We will use the shifted values we created from the shifted model: {17, 307, 346, 376, 567, 900, 900, 900, 900, 900}
- Random variables X and Y will be used
 - X is the amount of loss or the ground-up loss variable
 - Y is the amount paid per claim

MLE Example Continued

undefined,
$$X \le 100$$

 $Y = \{ X - 100, 100 < X \le 900 \}$
 $900, X > 900$

 Now using the MLE we can get distribution and density functions to use later in our model

MLE Example Continued

• Distribution Function for Y is:

0,
$$y = 0$$

• $F_Y(y) = \{F_x(y + 100) - F_x(100), 0 < y < 900\}$

y ≥ 900

• Density Funtion for Y is:

$$\underline{f_X}(y+100), \quad 0 \le y < 900$$

1 - $F_X(100)$

•
$$f_Y(y) = \{ 1 - F_X(1,000), y = 900 \}$$

 $1 - F_X(100)$
 $0, y > 900$

MLE Example Continued

- Now the MLE is used to estimate the values of the truncated data
- The Weibull Probability Distribution Function is used to estimate the parameters of the function
- The Weibull Distribution is defined by:

$$f(x) = \Gamma(x/\theta)^{\Gamma} e^{-(x/\theta)^{\Gamma}}$$
, and

$$F(x) = 1 - e^{-(x/\theta)^{\Gamma}}$$

Weibull Parameter Estimates

• The part of the likelihood function given by the 5 values at the upper limit of our set is:

$$f_{Y}(900) = \underline{1 - F_{X}(1,000)} = \underline{e}^{[-(1,000/\theta)^{\Gamma}]}$$

$$1 - F_{X}(100) \quad e^{[-(100/\theta)^{\Gamma}]}$$

• The part of the likelihood function from the values below the limit is given by:

$$f_{Y}(x) = f_{X}(x+100)^{\Gamma-1}$$

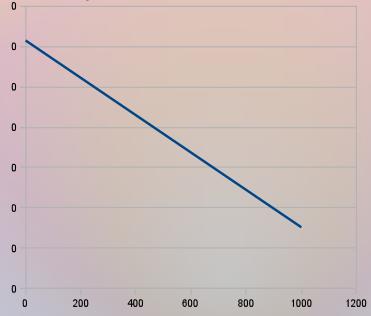
$$f_{Y}(x) = f_{X}(x+100) = \frac{\theta^{\Gamma}}{e^{[-(100/\theta)^{\Gamma}]}}$$

Weibull Parameter Estimates

- Now the Simplex Method is used to get maximum values for the parameters of the Weibull Distribution
 - The Simplex method is an iterative method used in maximum likelihood estimations to select the value that will give the largest change toward the minimum or maximum solutions
- Using the Simplex Method the estimates for our parameters are:
 - $\theta = 1,199.09$
 - $-\Gamma = 0.700744$

MLE Example

• With the parameter estimates we now have we can plug in any value for x to estimate the probability of that x value for any value below the upper limit



MLE Example

• The probability at the upper limit of 1,000 is calculated using the likelihood function for that limit.

- P = 49.40377%

Expectation Maximization Algorithm

- A much simpler model to use to get more accurate results for larger sets of data
- A two step process to iteratively calculate the probabilities of all possible values in the total set, including missing values from our given set
- Uses a log likelihood function instead of simply an MLE

Two Steps

- The two steps of the Expectation Maximization Algorithm are the E-step and the M-step
 - The E-step is the expectation step and estimates the missing data given the observed data and the current estimate of the model parameters using the conditional expectation
 - The M-step maximizes the likelihood function assuming the estimates from the E-step

EM Algorithm

• The EM Algorithm is derived from the fact that for any probability distribution Q(z):

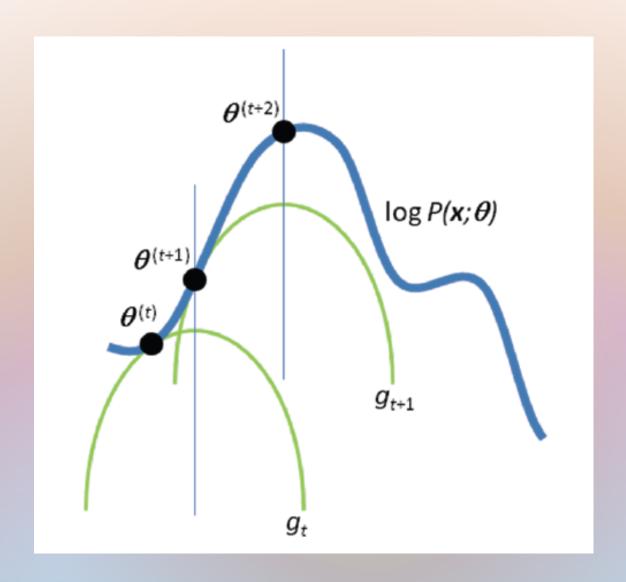
$$\log \left(\sum_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) \right) = \log \left(\sum_{\mathbf{z}} Q(\mathbf{z}) \cdot \frac{P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{Q(\mathbf{z})} \right) \ge \sum_{\mathbf{z}} Q(\mathbf{z}) \log \left(\frac{P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{Q(\mathbf{z})} \right),$$

• Now to update our estimate of θ we get:

$$\widehat{\boldsymbol{\theta}}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} g_t(\boldsymbol{\theta})$$

• Where:

$$g_t(\theta) = \sum_{z} P\left(z | x; \hat{\theta}^{(t)}\right) \log\left(\frac{P(x, z; \theta)}{P\left(z | x; \hat{\theta}^{(t)}\right)}\right).$$

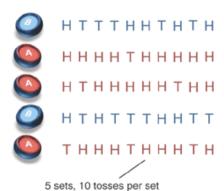


EM Algorithm

• Essentially this means that for each new maximum value of θ we have:

$$\hat{\theta}^{(t+1)} = \arg \max_{\theta} \sum_{z} P(z|x; \hat{\theta}^{(t)}) \log P(x, z; \theta).$$

Maximum likelihood



Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

	5 H, 5 T	
1 T		$\hat{\theta}_{A} = \frac{24}{24 + 6} = 0.80$
2 T		â - 9 -0.45
	4 H, 6 T	$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$
3 T		

b Expectation maximization

нтттннтнтн
ннннтннннн
нтннннтнн
нтнтттннтт
тнинтинити

 $\hat{\theta}_{A}^{(0)} = 0.60$

 $\hat{\theta}_{B}^{(0)} = 0.50$

0.73 x 🔼

0.35 x

0.55 x 🤇

0.20 x (

0.27 x

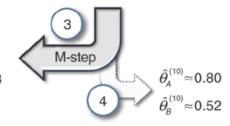
0.65 x

0.35x

Coin A	Coin B
≈ 2.2 H, 2.2 T	≈ 2.8 H, 2.8 T
≈ 7.2 H, 0.8 T	≈ 1.8 H, 0.2 T
≈ 5.9 H, 1.5 T	≈ 2.1 H, 0.5 T
≈ 1.4 H, 2.1 T	≈ 2.6 H, 3.9 T
≈ 4.5 H, 1.9 T	≈ 2.5 H, 1.1 T
≈ 21.3 H, 8.6 T	≈ 11.7 H, 8.4 T

$$\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_{B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$



Summary

- Shifted Models
 - Primitive and very inaccurate
- MLE's
 - Still relatively basic and primarily only takes into account observed data and ends with an estimate for all data including unobserved data
- EM Algorithm
 - Most productive two step model to estimate pdf's using an estimate of missing data and maximizing probabilities of all data in range