# Incomplete Data

# Incomplete Data

- •Incomplete Data in insurance is a common problem and prevalent in basically all data sets.
- •Can be incomplete from missing data or lack of filed claims

# Types of Incomplete Data

- Data can be incomplete from many different reasons.
   From simply missing data, censored data or truncated data.
  - Incomplete data from missing data is caused by data sets simply missing values.
  - Incomplete data is considered censored when the number of values in a set are known, but the values themselves are unknown.
  - Incomplete data is said to be truncated when there are values in a set that are excluded.

#### Truncation

- Two main types of truncation
  - Data is said to be truncated from below when the set of missing data is all the values below a specific value in the set.
  - Data is said to be truncated from above when the set of missing data is all the values above a specific value in the set.

#### Insurance Truncation

- Insurance data sets are often truncated due to multiple reasons
  - Deductibles
  - Total loss limits

## Models for Incomplete Data

- Many different models are used to estimate distributions containing incomplete data. A few are:
  - Shifted Models
  - Maximum Likelihood Estimations
  - The Expectation Maximization Algorithm

#### Shifted Models

- Simply shift the data set to estimate the missing values
  - This is a very inaccurate way to estimate incomplete data
  - Only takes into account current data and does not look at what values the missing data could actually be

#### Shifted Models

- Using data set: {117, 407, 446, 476, 667, 1,000, 1,000, 1,000, 1,000, 1,000} as our set of claims
- Shifted data set could be: {17, 307, 346, 376, 567, 900, 900, 900, 900, 900}





#### MLE

- To look at the next two models we have to consider maximum likelihoods
- MLE is the Maximum Likelihood Estimate

#### **MLE**

Let  $X = \{X_1, ..., X_n\}$  be a random vector and  $\{f_X(x|\theta): \theta \in \Theta\}$ 

this model is parameterized by  $\theta = \{\theta_1, \dots, \theta_n\}$ , which is the parameter vector in the parameter space  $\Theta$ .

So the Likelihood Function is a map L: $\Theta$ —>R given by  $L(\theta|x)=f_x(x|\theta)$ 

#### **MLE**

The parameter vector  $\theta$  such that

 $L(\theta) \ge L(\theta)$  for all  $\theta \in \Theta$ 

is called a Maximum Likelihood of θ

 Now using this Maximum Likelihood Estimate we can gain a model of our data from the previous example

## MLE Example

- We will use the shifted values we created from the shifted model: {17, 307, 346, 376, 567, 900, 900, 900, 900, 900}
- Random variables X and Y will be used
  - X is the amount of loss or the ground-up loss variable
  - Y is the amount paid per claim

# MLE Example Continued

undefined, 
$$X \le 100$$
  
 $Y = \{ X - 100, 100 < X \le 900 \}$   
 $900, X > 900$ 

 Now using the MLE we can get distribution and density functions to use later in our model

# MLE Example Continued

• Distribution Function for Y is:

0, 
$$y = 0$$
  
•  $F_Y(y) = \{F_x(y + 100) - F_x(100), 0 < y < 900\}$ 

y ≥ 900

• Density Funtion for Y is:

$$\underline{f_X}(y+100), \quad 0 \le y < 900$$
  
1 -  $F_X(100)$ 

• 
$$f_Y(y) = \{ 1 - F_X(1,000), y = 900 \}$$
  
 $1 - F_X(100)$   
 $0, y > 900$ 

# MLE Example Continued

- Now the MLE is used to estimate the values of the truncated data
- The Weibull Probability Distribution Function is used to estimate the parameters of the function
- The Weibull Distribution is defined by:

$$f(x) = \Gamma(x/\theta)^{\Gamma} e^{-(x/\theta)^{\Gamma}}$$
, and

$$F(x) = 1 - e^{-(x/\theta)^{\Gamma}}$$

#### Weibull Parameter Estimates

• The part of the likelihood function given by the 5 values at the upper limit of our set is:

$$f_{Y}(900) = \underline{1 - F_{X}(1,000)} = \underline{e}^{[-(1,000/\theta)^{\Gamma}]}$$

$$1 - F_{X}(100) \quad e^{[-(100/\theta)^{\Gamma}]}$$

• The part of the likelihood function from the values below the limit is given by:

$$f_{Y}(x) = f_{X}(x+100)^{\Gamma-1}$$

$$f_{Y}(x) = f_{X}(x+100) = \frac{\theta^{\Gamma}}{e^{[-(100/\theta)^{\Gamma}]}}$$

#### Weibull Parameter Estimates

- Now the Simplex Method is used to get maximum values for the parameters of the Weibull Distribution
  - The Simplex method is an iterative method used in maximum likelihood estimations to select the value that will give the largest change toward the minimum or maximum solutions
- Using the Simplex Method the estimates for our parameters are:
  - $\theta = 1,199.09$
  - $-\Gamma = 0.700744$

## MLE Example

• With the parameter estimates we now have we can plug in any value for x to estimate the probability of that x value for any value below the upper limit



#### MLE Example

• The probability at the upper limit of 1,000 is calculated using the likelihood function for that limit.

- P = 49.40377%

# **Expectation Maximization Algorithm**

- A much simpler model to use to get more accurate results for larger sets of data
- A two step process to iteratively calculate the probabilities of all possible values in the total set, including missing values from our given set
- Uses a log likelihood function instead of simply an MLE

# Two Steps

- The two steps of the Expectation Maximization Algorithm are the E-step and the M-step
  - The E-step is the expectation step and estimates the missing data given the observed data and the current estimate of the model parameters using the conditional expectation
  - The M-step maximizes the likelihood function assuming the estimates from the E-step

#### EM Algorithm

• The EM Algorithm is derived from the fact that for any probability distribution Q(z):

$$\log \left( \sum_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) \right) = \log \left( \sum_{\mathbf{z}} Q(\mathbf{z}) \cdot \frac{P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{Q(\mathbf{z})} \right) \ge \sum_{\mathbf{z}} Q(\mathbf{z}) \log \left( \frac{P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{Q(\mathbf{z})} \right),$$

• Now to update our estimate of  $\theta$  we get:

$$\widehat{\boldsymbol{\theta}}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} g_t(\boldsymbol{\theta})$$

• Where:

$$g_t(\theta) = \sum_{z} P\left(z | x; \hat{\theta}^{(t)}\right) \log\left(\frac{P(x, z; \theta)}{P\left(z | x; \hat{\theta}^{(t)}\right)}\right).$$



#### EM Algorithm

• Essentially this means that for each new maximum value of  $\theta$  we have:

$$\hat{\theta}^{(t+1)} = \arg \max_{\theta} \sum_{z} P(z|x; \hat{\theta}^{(t)}) \log P(x, z; \theta).$$

#### Maximum likelihood



| Coin A    | Coin B    |
|-----------|-----------|
|           | 5 H, 5 T  |
| 9 H, 1 T  |           |
| 8 H, 2 T  |           |
|           | 4 H, 6 T  |
| 7 H, 3 T  |           |
| 24 H, 6 T | 9 H, 11 T |

|     | 5 H, 5 T |                                               |
|-----|----------|-----------------------------------------------|
| 1 T |          | $\hat{\theta}_{A} = \frac{24}{24 + 6} = 0.80$ |
| 2 T |          | â - 9 -0.45                                   |
|     | 4 H, 6 T | $\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$    |
| 3 T |          |                                               |

#### **b** Expectation maximization



| нтттннтнтн |
|------------|
| ннннтннннн |
| нтннннтнн  |
| нтнтттннтт |
| тнинтинити |

 $\hat{\theta}_{A}^{(0)} = 0.60$ 

 $\hat{\theta}_{B}^{(0)} = 0.50$ 

0.73 x 🔼

0.35 x

0.55 x 🤇

0.20 x (

0.27 x

0.65 x

0.35x

| Coin A          | Coin B          |
|-----------------|-----------------|
| ≈ 2.2 H, 2.2 T  | ≈ 2.8 H, 2.8 T  |
| ≈ 7.2 H, 0.8 T  | ≈ 1.8 H, 0.2 T  |
| ≈ 5.9 H, 1.5 T  | ≈ 2.1 H, 0.5 T  |
| ≈ 1.4 H, 2.1 T  | ≈ 2.6 H, 3.9 T  |
| ≈ 4.5 H, 1.9 T  | ≈ 2.5 H, 1.1 T  |
| ≈ 21.3 H, 8.6 T | ≈ 11.7 H, 8.4 T |



$$\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_{B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$



## Summary

- Shifted Models
  - Primitive and very inaccurate
- MLE's
  - Still relatively basic and primarily only takes into account observed data and ends with an estimate for all data including unobserved data
- EM Algorithm
  - Most productive two step model to estimate pdf's using an estimate of missing data and maximizing probabilities of all data in range