


 Incomplete Data in insurance is a 
common problem and prevalent in 
basically all data sets. 
 Can be incomplete from missing data 
or lack of filed claims 

Incomplete Data 



Types of Incomplete Data 

  Data can be incomplete from many different reasons.  
From simply missing data, censored data or 
truncated data. 

-  Incomplete data from missing data is caused by 
data sets simply missing values. 

-  Incomplete data is considered censored when the 
number of values in a set are known, but the values 
themselves are unknown. 

-  Incomplete data is said to be truncated when there 
are values in a set that are excluded. 



Truncation 

  Two main types of truncation 
-  Data is said to be truncated from below when the 

set of missing data is all the values below a specific 
value in the set. 

-  Data is said to be truncated from above when the 
set of missing data is all the values above a specific 
value in the set. 



Insurance Truncation 

  Insurance data sets are often truncated due 
to multiple reasons 

-  Deductibles 
-  Total loss limits 



Models for Incomplete Data 

  Many different models are used to 
estimate distributions containing 
incomplete data.  A few are: 

-  Shifted Models 
-  Maximum Likelihood Estimations 
-  The Expectation Maximization 

Algorithm 



Shifted Models 

  Simply shift the data set to estimate the missing 
values 

-  This is a very inaccurate way to estimate 
incomplete data 

-  Only takes into account current data and does not 
look at what values the missing data could actually 
be 



Shifted Models 

  Using data set: {117, 407, 446, 476, 667, 1,000, 
1,000, 1,000, 1,000, 1,000} as our set of claims 

  Shifted data set could be: {17, 307, 346, 376, 567, 
900, 900, 900, 900, 900} 



MLE 
  To look at the next two models we have 

to consider maximum likelihoods 
  MLE is the Maximum Likelihood 

Estimate 



MLE 

Let X={X1,.......,Xn} be a random vector and 
{fX(x|θ):θЄΘ} 
this model is parameterized by θ={θ1,.......,θn), which is 

the parameter vector in the parameter space Θ. 
So the Likelihood Function is a map L:Θ—>R given by 
L(θ|x)=fX(x|θ) 



MLE 

The parameter vector θ such that 
L(θ)≥L(θ) for all θЄΘ 
is called a Maximum Likelihood of θ 
  Now using this Maximum Likelihood Estimate we 

can gain a model of our data from the previous 
example 



MLE Example 

  We will use the shifted values we created from the 
shifted model: {17, 307, 346, 376, 567, 900, 900, 
900, 900, 900} 

  Random variables X and Y will be used 
-  X is the amount of loss or the ground-up loss 

variable 
-  Y is the amount paid per claim 



MLE Example Continued 

undefined,  X ≤ 100 
Y={  X – 100,  100 < X ≤ 900 
900,    X > 900 

  Now using the MLE we can get distribution and 
density functions to use later in our model 



MLE Example Continued 
  Distribution Function for Y is: 

    0,             y = 0 
  FY(y)={Fx(y + 100) – Fx(100),  0 < y < 900 

    1,             y ≥ 900 
  Density Funtion for Y is: 

  fX(y + 100),      0 ≤ y < 900 
  1 - FX(100) 
  fY(y)={ 1 – FX(1,000),      y = 900 

   1 – FX(100) 
   0,          y > 900 



MLE Example Continued 

  Now the MLE is used to estimate the values of the 
truncated data 

  The Weibull Probability Distribution Function is 
used to estimate the parameters of the function 

  The Weibull Distribution is defined by: 
f(x) = Γ(x/θ)Γe-(x/θ)Γ, and 
                  x          
    F(x) = 1 - e-(x/θ)Γ 



Weibull Parameter Estimates 

  The part of the likelihood function given by the 5 
values at the upper limit of our set is: 

fY(900) = 1 – FX(1,000) = e[-(1,000/θ)Γ] 

                       1 – FX(100)      e[-(100/θ)Γ] 

  The part of the likelihood function from the values below 
the limit is given by: 

           Γ(x + 100)Γ - 1 

fY(x) = fX(x+100) =         θΓ                    e[-((x + 100)/θ)Γ] 

                                      e[-(100/θ)Γ] 



Weibull Parameter Estimates 

  Now the Simplex Method is used to get maximum 
values for the parameters of the Weibull Distribution 

-  The Simplex method is an iterative method used in 
maximum likelihood estimations to select the value 
that will give the largest change toward the 
minimum or maximum solutions 

  Using the Simplex Method the estimates for our 
parameters are: 

-  θ = 1,199.09 
-  Γ = 0.700744 



MLE Example 

  With the parameter estimates we now have we can 
plug in any value for x to estimate the probability of 
that x value for any value below the upper limit 



MLE Example 

  The probability at the upper limit of 1,000 is 
calculated using the likelihood function for that 
limit. 

-  P = 49.40377% 



Expectation Maximization Algorithm 

  A much simpler model to use to get more accurate 
results for larger sets of data 

  A two step process to iteratively calculate the 
probabilities of all possible values in the total set, 
including missing values from our given set 

  Uses a log likelihood function instead of simply an 
MLE 



Two Steps 

  The two steps of the Expectation Maximization 
Algorithm are the E-step and the M-step 

-  The E-step is the expectation step and estimates the 
missing data given the observed data and the 
current estimate of the model parameters using the 
conditional expectation 

-  The M-step maximizes the likelihood function 
assuming the estimates from the E-step 



EM Algorithm 

  The EM Algorithm is derived from the fact that for 
any probability distribution Q(z): 

  Now to update our estimate of θ we get: 

  Where: 





EM Algorithm 

  Essentially this means that for each new maximum 
value of θ we have: 





Summary 
  Shifted Models 

-  Primitive and very inaccurate 
  MLE's 

-  Still relatively basic and primarily only takes 
into account observed data and ends with an 
estimate for all data including unobserved 
data 

  EM Algorithm 
-  Most productive two step model to estimate 

pdf's using an estimate of missing data and 
maximizing probabilities of all data in range 


