Elliptic Curves: a Jewel of Modern Mathematics

By: Jacob White

How Would You Like to Win \$1,000,000?

- . Become famous like Andrew Wiles!
- . Taniyama-Shimura Conjecture and Fermat's Last Theorem
- Birch and Swinnerton-Dyer Conjecture

What does an Elliptic Curve Look Like?

$$y^2 = x^3 + 3x + 4$$

$$y^2 = x^3 - 2x + 1$$

◄ | ▶

The General Form of an Elliptic Curve

- . Complete general form: $y^2 + ay = x^3 + bx^2 + cxy + dx + e$, together with a special point, O
- Typical form: $y^2 = x^3 + ax + b$ (occurs when characteristic of field is neither 2 nor 3, and is called Weierstrass Normal Form)

More Examples

Show::gtype: PlotEc is not a type of graphics. >>>

What do these Curves have to do with Ellipses?

- Wallis English Mathematician studying arclength of an ellipse Parameterize ellipse using $x = acos(\theta)$, $y = bsin(\theta)$
- $a \int \sqrt{1 \frac{(1 b^2)}{a^2} \cos^2(\theta)} \ d\theta$

Let
$$e^2 = 1 - \frac{b^2}{a^2}$$
, $x = \cos(\theta)$ and the integral becomes: $-a \int \sqrt{\frac{1 - (e^2 x^2)}{1 - x^2}} dx$

• Let y denote the integrand, and note that $y^2(1-x^2) = 1 - e^2 x^2$

Now let
$$u = \frac{1}{1+x}$$
, $v = y \frac{(1-x)}{(1+x)}$ and you can get $v^2 = 2(u^3)(1-e^2) + u^2(5e^2-1) - 4e^2u + e^2$

And now we have an elliptic curve!

Elliptic Integrals

- Does this integral look familiar? $\int \frac{1}{\sqrt{1-x^2}} dx$
- That's the Arcsine function!
- Arises from arclength of a circle rather than ellipse
- Example: $-a \int \sqrt{1 \frac{(e^2 x^2)}{1 x^2}} \ dx$
- Generalization of inverse trigonometric functions

Elliptic Functions

- . Sine versus Arcsine
- . Inversion of elliptic integrals!
- . y=Sin(x) has period 2π ...
- Definition: in the complex plane, an elliptic function is a *doubly* periodic function that is analytic and without singularities, where the ratio of the periods cannot be real
- Arise in differential equations, applications in engineering and physics
- . Weierstrass elliptic functions

Gauss, Jacobi, and Abel

. Gauss - arclength of the

lemniscate:
$$\frac{1}{\sqrt{2}} \int_0^1 \frac{1}{\sqrt{1-x^4}} dx$$

. Jacobi's incomplete elliptic integral of the first kind:

$$\int_0^X \frac{1}{\sqrt{(1-x^2)(1-k^2 x^2)}} \, dx$$

 k^2 is called the modulus of the function.

Gauss and Abel: if k² ≠ 1, then inversion gives an elliptic function!

A torus on C/L

- Definition: The lattice L formed by x and y is the set {ax + by | a,b ∈ Z} Example: the Gaussian Integers {a + bi | a,b ∈ Z}!
- Form lattice with periods of elliptic function
- C/L is a torus!

An Informal Definition of an Elliptic Curve

- A cubic curve whose solutions fall within a region topologically equivalent to a torus.
- . Where did that come from?
- The Weierstrass elliptic functions tell us how to go from a given torus to an equation of the curve

Summary and Explanation

- . Starting with an elliptic integral, take the inverse to get to an elliptic function.
- The resulting function has two complex periods, and by creating a lattice L out of these points we can use C/L to define an elliptic curve.
- Weierstrass elliptic functions again

$$y^2 + ay = x^3 + bx^2 + cxy + dx + e$$
.

◄ | ▶

Introduction to the Projective Plane

- . Special point on all elliptic curves?
- Definition: The real projective plane is the set of all lines through the origin.
- Ratios [X:Y:Z], where X,Y,Z ϵ R. (2,3,5) ~ (4,6,10)
- Identify lines of R_3 with their slope

Projective Plane (Continued)

- . P_R^2 (the projective plane): {[X:Y:Z] | X, Y, Z \in R, and X,Y,Z not all zero}.
- Line at infinity (Z = 0 yields [1:y:0])
- . XY-plane hidden in projective plane (Z ≠ 1 yields [x:y:1])
- Equation for elliptic curve including special point: $Y^2Z = X^3 + aX^2Z + bXZ^2 + cZ^3$
- Intersection of equation with projective plane?

Point at infinity and Weierstrass Equation $(y^2 = x^3 + ax + b)$

Finally, a Formal Definition

- . An elliptic curve over a field K is the set of all solutions in K of a nonsingular projective algebraic curve over K with genus 1, together with a given point defined over K.
- Nonsingular if f(x) is the equation of the curve, -f'(x) and $2\sqrt{f(x)}$ don't vanish at the same point
- . Topologically equivalent to a torus

Point at infinity

Addition?

. We must be able to add points - C/L

- Geometric way: take two points on the curve, construct the line between them. If the line intersects a third point (almost always the case), reflect this point through the horizontal axis of symmetry to find the sum.
- . Special cases...
- . Abel's proof

Demonstration of Addition

■ | **▶**

What Properties Hold for this Addition?

- Additive inverse of a point (x,y) is (x, -y)
- . Identity: point at infinity
- . Associativity holds
- . Even commutativity holds!

◄ | ▶

A Group is Born!

- Abelian group
- . Geometry, Complex Analysis, and Abstract Algebra meet one another
- Applications of this remarkable fact

◄ | ▶

Subgroups

- Poincare studied elliptic curves in depth
- Subgroup for the form $y^2 = x^3 + ax + b$
- Let a, b ∈ K for some field K. The set of all solutions with coordinates in K forms a subgroup of the entire curve

Finite Fields and Cryptography

- . The field K doesn't have to be infinite
- . Applications to cryptography enjoy the field Z_p , where p is prime
- . We can't view the curve geometrically over Z_p , but we can still add

∢ | ▶

Birch and Swinnerton-Dyer

- . What if K is the rational numbers?
- The conjecture is that there is a simple way to tell whether an elliptic curve over Q has a finite or infinite number of solutions whose coordinates are also rational.
- Has been proven in special cases, still huge amount of research

∢ | ▶

Final Thoughts

- Elliptic Curves are of vital importance in modern number theory
- Studying them *could* net you money
- Applications in computer science, engineering, and physics

Special Thanks To:

- . Wolfram and *Mathematica* for demonstrations and insight
- Dr. Lunsford for helping me choose an interesting and challenging topic

Works Cited

- Koblitz, Neal. Introduction to Elliptic Curves and Modular Forms. New York: Springer, 1984.
- McKean, Henry and Moll, Victor. Elliptic Curves. Cambridge University Press, 1997.
- Charlap, Leonard S., and Robbins, David P. "An Elementary Introduction to Elliptic Curves."
 December 1988. <www.idaccr.org/reports/reports.html>
- Akhtar, Reza. "An Introduction to Elliptic Curves." Summer 2002.
 <calico.mth.muohio.edu/reza/sumsri/2002/notes.pdf>
- Silverman, Joseph H. "An Introduction to the Theory of Elliptic Curves." July 2006.
 <www.math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf>
- Hewitt, Paul. "A Brief History of Elliptic Curves." December 2005.
 livetoad.org/Courses/Documents/132d/.../history_of_elliptic_curves.pdf>
- www.wikipedia.org
- mathworld.wolfram.com

■