The Mathematics of Music by Lindsey Crain

Mathematics

"the queen of science"

Music

"the queen of art"

↓Chaldeans, Egyptians, Babylonians, Chinese

VPYTHAGOREANS

↓QUADRIVIUM:

arithmetic geometry astronomy *MUSIC*

VRENAISSANCE

The Mathematics of:

Musical Sound

Musical Structure

Musical Composition

The Mathematics of Sound

All of music is based on the physical concept of *vibrations*.

Early mathematicians who studied the mathematical basis of music:

Pythagoras

Euclid

Galileo

Descartes

Further developments after the advent of modern science:

≺Overtones

≺Debate over the motion of the string

Fourier's theorem: "Every periodic phenomenon can be decomposed into a very large number of pure sine waves, or simple harmonic vibrations, whose frequencies are multiples of the frequency of the phenomenon under study."

Sine Curve

$$y=sin(2x)$$

$$y=sin(2x)$$
$$y=2sin(2x)$$

The Mathematics of Musical Structure

The Pythagoreans expressed the relation of the vibrating portion of a string to the whole string in ratios.

1:2 octave 2:3 fifth

↓Consonant sounds (ratios of 1, 2, 3, or 4)

↓Dissonant sounds (more complex ratios)

Development of the Scale

↓Pythagorean Scale

third harmonic

1	9/8	81/64	4/3	3/2	27/16	243/128	2
С	D	Е	F	G	A	В	С

perfect fifth

Just Intonation Scale

Equal Temperament Scale Middle Eastern and Oriental Scales

Logarithmic Spiral Representation of Pitch vs. Frequency

$$r_n = r_0 q^n$$

$$q=e^{2\square a}$$

Z₁₂Analysis of Musical Chords

$$Z_{12} = \{0, 1, \ldots, 11\}$$

Transposition:

$$T_n(P) = \{p_1+n, \ldots, p_k+n\}$$

Inversion:

$$I_n(P) = \{-p_1+n, \ldots, -p_k+n\}$$

Twelve Tone Operators:

$$\{T_n, I_n \mid n=0, ..., 11\}$$

The circle of fifths transform

"closely related" keys

"remotely related" keys

The Mathematics of

Musical Composition

- **≺Similar thought** processes
- **≺Reflection in** compositions

Both are aesthetically pleasing and logically challenging

↓The beauty of mathematics

Gauss's quick calculation: 1 + 2 + 3 + ... + 100 = 5050

Recognizing patterns

Contrast between size of task and simplicity of solution

↓The logic behind music

Music exemplifies logical characteristics of mathematics.

Music also involves recognizing patterns.

Similarities in Reading and Understanding

↓Symbols

Similarities in Creation

↓Creation begins with new ideas--the selection of the most beautiful combination from an infinitude of possibilities

♦Once chosen the ideas are put into a critical ORDER

The effect of each field on one's ability to master the other

↓Talent in one often accompanies enthusiasm for the other.

Gordon Shaw discovers the "Mozart Effect"

VNeurological evidence

♦Physiological evidence

↓Statistical evidence

Mathematical Ideas Hidden in Musical Compositions

MOZART

Fan of both music and mathematics

↓The Golden Section

The Golden Section in Mozart's Sonatas

$$a/b = b/(a+b)$$

$$x^7 = 1.6180$$

- **↓**Traditional form of a sonata:
 - 1. Exposition (denoted a)
 - 2. Development and Recapitulation (denoted *b*)

Plot of b against a+b

$$y = x^{3}x$$
 (red)
 $y = -0.03241 + 0.6091x$ (blue)

Plot of a against b

$$y = xx$$
 (red)
 $y = -0.03241 + 0.6091x$ (blue)

Possible values of a/b

If $m/4 \le a \le m/2$, then an estimate of the expected value of a/b is

© 0.6219

Some twentieth century composers who used mathematics:

John Cage

Milton Babbitt

Iannis Xenakis

Mathematics is "as useful to [the musician] as the learning of another language is to a poet."

Igor Stravinsky

"Mathematics swims seductively just below the surface of music. It is a naiad gazing at the composer, seemingly within reach but actually unreachable." Eugene Helm

Einstein

Oak Ridge Scientists

Presenting...

"The Mathematical Mambo?"